1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
|
SUBROUTINE DDASKR (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
* IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC, PSOL,
* RT, NRT, JROOT)
C
C***BEGIN PROLOGUE DDASKR
C***REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021105 Changed yprime argument in DRCHEK calls to YPRIME.
C 021217 Modified error return for zeros found too close together.
C 021217 Added root direction output in JROOT.
C 031201 stuck root masking
c 040615 Removing Hmin requirement
c 040615 Separating the error message of Singular Jacobian in DDASID
c
C***CATEGORY NO. I1A2
C***KEYWORDS DIFFERENTIAL/ALGEBRAIC, BACKWARD DIFFERENTIATION FORMULAS,
C IMPLICIT DIFFERENTIAL SYSTEMS, KRYLOV ITERATION
C***AUTHORS Linda R. Petzold, Peter N. Brown, Alan C. Hindmarsh, and
C Clement W. Ulrich
C Center for Computational Sciences & Engineering, L-316
C Lawrence Livermore National Laboratory
C P.O. Box 808,
C Livermore, CA 94551
C***PURPOSE This code solves a system of differential/algebraic
C equations of the form
C G(t,y,y') = 0 ,
C using a combination of Backward Differentiation Formula
C (BDF) methods and a choice of two linear system solution
C methods: direct (dense or band) or Krylov (iterative).
C This version is in double precision.
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C *Usage:
C
C IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C INTEGER NEQ, INFO(N), IDID, LRW, LIW, IWORK(LIW), IPAR(*)
C DOUBLE PRECISION T, Y(*), YPRIME(*), TOUT, RTOL(*), ATOL(*),
C RWORK(LRW), RPAR(*)
C EXTERNAL RES, JAC, PSOL, RT
C
C CALL DDASKR (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
C * IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC, PSOL,
C * RT, NRT, JROOT)
C
C Quantities which may be altered by the code are:
C T, Y(*), YPRIME(*), INFO(1), RTOL, ATOL, IDID, RWORK(*), IWORK(*)
C
C
C *Arguments:
C
C RES:EXT This is the name of a subroutine which you
C provide to define the residual function G(t,y,y')
C of the differential/algebraic system.
C
C NEQ:IN This is the number of equations in the system.
C
C T:INOUT This is the current value of the independent
C variable.
C
C Y(*):INOUT This array contains the solution components at T.
C
C YPRIME(*):INOUT This array contains the derivatives of the solution
C components at T.
C
C TOUT:IN This is a point at which a solution is desired.
C
C INFO(N):IN This is an integer array used to communicate details
C of how the solution is to be carried out, such as
C tolerance type, matrix structure, step size and
C order limits, and choice of nonlinear system method.
C N must be at least 20.
C
C RTOL,ATOL:INOUT These quantities represent absolute and relative
C error tolerances (on local error) which you provide
C to indicate how accurately you wish the solution to
C be computed. You may choose them to be both scalars
C or else both arrays of length NEQ.
C
C IDID:OUT This integer scalar is an indicator reporting what
C the code did. You must monitor this variable to
C decide what action to take next.
C
C RWORK:WORK A real work array of length LRW which provides the
C code with needed storage space.
C
C LRW:IN The length of RWORK.
C
C IWORK:WORK An integer work array of length LIW which provides
C the code with needed storage space.
C
C LIW:IN The length of IWORK.
C
C RPAR,IPAR:IN These are real and integer parameter arrays which
C you can use for communication between your calling
C program and the RES, JAC, and PSOL subroutines.
C
C JAC:EXT This is the name of a subroutine which you may
C provide (optionally) for calculating Jacobian
C (partial derivative) data involved in solving linear
C systems within DDASKR.
C
C PSOL:EXT This is the name of a subroutine which you must
C provide for solving linear systems if you selected
C a Krylov method. The purpose of PSOL is to solve
C linear systems involving a left preconditioner P.
C
C RT:EXT This is the name of the subroutine for defining
C constraint functions Ri(T,Y,Y')) whose roots are
C desired during the integration. This name must be
C declared external in the calling program.
C
C NRT:IN This is the number of constraint functions
C Ri(T,Y,Y'). If there are no constraints, set
C NRT = 0, and pass a dummy name for RT.
C
C JROOT:OUT This is an integer array of length NRT for output
C of root information.
C
C *Overview
C
C The DDASKR solver uses the backward differentiation formulas of
C orders one through five to solve a system of the form G(t,y,y') = 0
C for y = Y and y' = YPRIME. Values for Y and YPRIME at the initial
C time must be given as input. These values should be consistent,
C that is, if T, Y, YPRIME are the given initial values, they should
C satisfy G(T,Y,YPRIME) = 0. However, if consistent values are not
C known, in many cases you can have DDASKR solve for them -- see
C INFO(11). (This and other options are described in detail below.)
C
C Normally, DDASKR solves the system from T to TOUT. It is easy to
C continue the solution to get results at additional TOUT. This is
C the interval mode of operation. Intermediate results can also be
C obtained easily by specifying INFO(3).
C
C On each step taken by DDASKR, a sequence of nonlinear algebraic
C systems arises. These are solved by one of two types of
C methods:
C * a Newton iteration with a direct method for the linear
C systems involved (INFO(12) = 0), or
C * a Newton iteration with a preconditioned Krylov iterative
C method for the linear systems involved (INFO(12) = 1).
C
C The direct method choices are dense and band matrix solvers,
C with either a user-supplied or an internal difference quotient
C Jacobian matrix, as specified by INFO(5) and INFO(6).
C In the band case, INFO(6) = 1, you must supply half-bandwidths
C in IWORK(1) and IWORK(2).
C
C The Krylov method is the Generalized Minimum Residual (GMRES)
C method, in either complete or incomplete form, and with
C scaling and preconditioning. The method is implemented
C in an algorithm called SPIGMR. Certain options in the Krylov
C method case are specified by INFO(13) and INFO(15).
C
C If the Krylov method is chosen, you may supply a pair of routines,
C JAC and PSOL, to apply preconditioning to the linear system.
C If the system is A*x = b, the matrix is A = dG/dY + CJ*dG/dYPRIME
C (of order NEQ). This system can then be preconditioned in the form
C (P-inverse)*A*x = (P-inverse)*b, with left preconditioner P.
C (DDASKR does not allow right preconditioning.)
C Then the Krylov method is applied to this altered, but equivalent,
C linear system, hopefully with much better performance than without
C preconditioning. (In addition, a diagonal scaling matrix based on
C the tolerances is also introduced into the altered system.)
C
C The JAC routine evaluates any data needed for solving systems
C with coefficient matrix P, and PSOL carries out that solution.
C In any case, in order to improve convergence, you should try to
C make P approximate the matrix A as much as possible, while keeping
C the system P*x = b reasonably easy and inexpensive to solve for x,
C given a vector b.
C
C While integrating the given DAE system, DDASKR also searches for
C roots of the given constraint functions Ri(T,Y,Y') given by RT.
C If DDASKR detects a sign change in any Ri(T,Y,Y'), it will return
C the intermediate value of T and Y for which Ri(T,Y,Y') = 0.
C
C *Description
C
C------INPUT - WHAT TO DO ON THE FIRST CALL TO DDASKR-------------------
C
C
C The first call of the code is defined to be the start of each new
C problem. Read through the descriptions of all the following items,
C provide sufficient storage space for designated arrays, set
C appropriate variables for the initialization of the problem, and
C give information about how you want the problem to be solved.
C
C
C RES -- Provide a subroutine of the form
C
C SUBROUTINE RES (T, Y, YPRIME, CJ, DELTA, IRES, RPAR, IPAR)
C
C to define the system of differential/algebraic
C equations which is to be solved. For the given values
C of T, Y and YPRIME, the subroutine should return
C the residual of the differential/algebraic system
C DELTA = G(T,Y,YPRIME)
C DELTA is a vector of length NEQ which is output from RES.
C
C Subroutine RES must not alter T, Y, YPRIME, or CJ.
C You must declare the name RES in an EXTERNAL
C statement in your program that calls DDASKR.
C You must dimension Y, YPRIME, and DELTA in RES.
C
C The input argument CJ can be ignored, or used to rescale
C constraint equations in the system (see Ref. 2, p. 145).
C Note: In this respect, DDASKR is not downward-compatible
C with DDASSL, which does not have the RES argument CJ.
C
C IRES is an integer flag which is always equal to zero
C on input. Subroutine RES should alter IRES only if it
C encounters an illegal value of Y or a stop condition.
C Set IRES = -1 if an input value is illegal, and DDASKR
C will try to solve the problem without getting IRES = -1.
C If IRES = -2, DDASKR will return control to the calling
C program with IDID = -11.
C
C RPAR and IPAR are real and integer parameter arrays which
C you can use for communication between your calling program
C and subroutine RES. They are not altered by DDASKR. If you
C do not need RPAR or IPAR, ignore these parameters by treat-
C ing them as dummy arguments. If you do choose to use them,
C dimension them in your calling program and in RES as arrays
C of appropriate length.
C
C NEQ -- Set it to the number of equations in the system (NEQ .GE. 1).
C
C T -- Set it to the initial point of the integration. (T must be
C a variable.)
C
C Y(*) -- Set this array to the initial values of the NEQ solution
C components at the initial point. You must dimension Y of
C length at least NEQ in your calling program.
C
C YPRIME(*) -- Set this array to the initial values of the NEQ first
C derivatives of the solution components at the initial
C point. You must dimension YPRIME at least NEQ in your
C calling program.
C
C TOUT - Set it to the first point at which a solution is desired.
C You cannot take TOUT = T. Integration either forward in T
C (TOUT .GT. T) or backward in T (TOUT .LT. T) is permitted.
C
C The code advances the solution from T to TOUT using step
C sizes which are automatically selected so as to achieve the
C desired accuracy. If you wish, the code will return with the
C solution and its derivative at intermediate steps (the
C intermediate-output mode) so that you can monitor them,
C but you still must provide TOUT in accord with the basic
C aim of the code.
C
C The first step taken by the code is a critical one because
C it must reflect how fast the solution changes near the
C initial point. The code automatically selects an initial
C step size which is practically always suitable for the
C problem. By using the fact that the code will not step past
C TOUT in the first step, you could, if necessary, restrict the
C length of the initial step.
C
C For some problems it may not be permissible to integrate
C past a point TSTOP, because a discontinuity occurs there
C or the solution or its derivative is not defined beyond
C TSTOP. When you have declared a TSTOP point (see INFO(4)
C and RWORK(1)), you have told the code not to integrate past
C TSTOP. In this case any tout beyond TSTOP is invalid input.
C
C INFO(*) - Use the INFO array to give the code more details about
C how you want your problem solved. This array should be
C dimensioned of length 20, though DDASKR uses only the
C first 15 entries. You must respond to all of the following
C items, which are arranged as questions. The simplest use
C of DDASKR corresponds to setting all entries of INFO to 0.
C
C INFO(1) - This parameter enables the code to initialize itself.
C You must set it to indicate the start of every new
C problem.
C
C **** Is this the first call for this problem ...
C yes - set INFO(1) = 0
C no - not applicable here.
C See below for continuation calls. ****
C
C INFO(2) - How much accuracy you want of your solution
C is specified by the error tolerances RTOL and ATOL.
C The simplest use is to take them both to be scalars.
C To obtain more flexibility, they can both be arrays.
C The code must be told your choice.
C
C **** Are both error tolerances RTOL, ATOL scalars ...
C yes - set INFO(2) = 0
C and input scalars for both RTOL and ATOL
C no - set INFO(2) = 1
C and input arrays for both RTOL and ATOL ****
C
C INFO(3) - The code integrates from T in the direction of TOUT
C by steps. If you wish, it will return the computed
C solution and derivative at the next intermediate step
C (the intermediate-output mode) or TOUT, whichever comes
C first. This is a good way to proceed if you want to
C see the behavior of the solution. If you must have
C solutions at a great many specific TOUT points, this
C code will compute them efficiently.
C
C **** Do you want the solution only at
C TOUT (and not at the next intermediate step) ...
C yes - set INFO(3) = 0 (interval-output mode)
C no - set INFO(3) = 1 (intermediate-output mode) ****
C
C INFO(4) - To handle solutions at a great many specific
C values TOUT efficiently, this code may integrate past
C TOUT and interpolate to obtain the result at TOUT.
C Sometimes it is not possible to integrate beyond some
C point TSTOP because the equation changes there or it is
C not defined past TSTOP. Then you must tell the code
C this stop condition.
C
C **** Can the integration be carried out without any
C restrictions on the independent variable T ...
C yes - set INFO(4) = 0
C no - set INFO(4) = 1
C and define the stopping point TSTOP by
C setting RWORK(1) = TSTOP ****
C
C INFO(5) - used only when INFO(12) = 0 (direct methods).
C To solve differential/algebraic systems you may wish
C to use a matrix of partial derivatives of the
C system of differential equations. If you do not
C provide a subroutine to evaluate it analytically (see
C description of the item JAC in the call list), it will
C be approximated by numerical differencing in this code.
C Although it is less trouble for you to have the code
C compute partial derivatives by numerical differencing,
C the solution will be more reliable if you provide the
C derivatives via JAC. Usually numerical differencing is
C more costly than evaluating derivatives in JAC, but
C sometimes it is not - this depends on your problem.
C
C **** Do you want the code to evaluate the partial deriv-
C atives automatically by numerical differences ...
C yes - set INFO(5) = 0
C no - set INFO(5) = 1
C and provide subroutine JAC for evaluating the
C matrix of partial derivatives ****
C
C INFO(6) - used only when INFO(12) = 0 (direct methods).
C DDASKR will perform much better if the matrix of
C partial derivatives, dG/dY + CJ*dG/dYPRIME (here CJ is
C a scalar determined by DDASKR), is banded and the code
C is told this. In this case, the storage needed will be
C greatly reduced, numerical differencing will be performed
C much cheaper, and a number of important algorithms will
C execute much faster. The differential equation is said
C to have half-bandwidths ML (lower) and MU (upper) if
C equation i involves only unknowns Y(j) with
C i-ML .le. j .le. i+MU .
C For all i=1,2,...,NEQ. Thus, ML and MU are the widths
C of the lower and upper parts of the band, respectively,
C with the main diagonal being excluded. If you do not
C indicate that the equation has a banded matrix of partial
C derivatives the code works with a full matrix of NEQ**2
C elements (stored in the conventional way). Computations
C with banded matrices cost less time and storage than with
C full matrices if 2*ML+MU .lt. NEQ. If you tell the
C code that the matrix of partial derivatives has a banded
C structure and you want to provide subroutine JAC to
C compute the partial derivatives, then you must be careful
C to store the elements of the matrix in the special form
C indicated in the description of JAC.
C
C **** Do you want to solve the problem using a full (dense)
C matrix (and not a special banded structure) ...
C yes - set INFO(6) = 0
C no - set INFO(6) = 1
C and provide the lower (ML) and upper (MU)
C bandwidths by setting
C IWORK(1)=ML
C IWORK(2)=MU ****
C
C INFO(7) - You can specify a maximum (absolute value of)
C stepsize, so that the code will avoid passing over very
C large regions.
C
C **** Do you want the code to decide on its own the maximum
C stepsize ...
C yes - set INFO(7) = 0
C no - set INFO(7) = 1
C and define HMAX by setting
C RWORK(2) = HMAX ****
C
C INFO(8) - Differential/algebraic problems may occasionally
C suffer from severe scaling difficulties on the first
C step. If you know a great deal about the scaling of
C your problem, you can help to alleviate this problem
C by specifying an initial stepsize H0.
C
C **** Do you want the code to define its own initial
C stepsize ...
C yes - set INFO(8) = 0
C no - set INFO(8) = 1
C and define H0 by setting
C RWORK(3) = H0 ****
C
C INFO(9) - If storage is a severe problem, you can save some
C storage by restricting the maximum method order MAXORD.
C The default value is 5. For each order decrease below 5,
C the code requires NEQ fewer locations, but it is likely
C to be slower. In any case, you must have
C 1 .le. MAXORD .le. 5.
C **** Do you want the maximum order to default to 5 ...
C yes - set INFO(9) = 0
C no - set INFO(9) = 1
C and define MAXORD by setting
C IWORK(3) = MAXORD ****
C
C INFO(10) - If you know that certain components of the
C solutions to your equations are always nonnegative
C (or nonpositive), it may help to set this
C parameter. There are three options that are
C available:
C 1. To have constraint checking only in the initial
C condition calculation.
C 2. To enforce nonnegativity in Y during the integration.
C 3. To enforce both options 1 and 2.
C
C When selecting option 2 or 3, it is probably best to try
C the code without using this option first, and only use
C this option if that does not work very well.
C
C **** Do you want the code to solve the problem without
C invoking any special inequality constraints ...
C yes - set INFO(10) = 0
C no - set INFO(10) = 1 to have option 1 enforced
C no - set INFO(10) = 2 to have option 2 enforced
C no - set INFO(10) = 3 to have option 3 enforced ****
C
C If you have specified INFO(10) = 1 or 3, then you
C will also need to identify how each component of Y
C in the initial condition calculation is constrained.
C You must set:
C IWORK(40+I) = +1 if Y(I) must be .GE. 0,
C IWORK(40+I) = +2 if Y(I) must be .GT. 0,
C IWORK(40+I) = -1 if Y(I) must be .LE. 0, while
C IWORK(40+I) = -2 if Y(I) must be .LT. 0, while
C IWORK(40+I) = 0 if Y(I) is not constrained.
C
C INFO(11) - DDASKR normally requires the initial T, Y, and
C YPRIME to be consistent. That is, you must have
C G(T,Y,YPRIME) = 0 at the initial T. If you do not know
C the initial conditions precisely, in some cases
C DDASKR may be able to compute it.
C
C Denoting the differential variables in Y by Y_d
C and the algebraic variables by Y_a, DDASKR can solve
C one of two initialization problems:
C 1. Given Y_d, calculate Y_a and Y'_d, or
C 2. Given Y', calculate Y.
C In either case, initial values for the given
C components are input, and initial guesses for
C the unknown components must also be provided as input.
C
C **** Are the initial T, Y, YPRIME consistent ...
C
C yes - set INFO(11) = 0
C no - set INFO(11) = 1 to calculate option 1 above,
C or set INFO(11) = 2 to calculate option 2 ****
C
C If you have specified INFO(11) = 1, then you
C will also need to identify which are the
C differential and which are the algebraic
C components (algebraic components are components
C whose derivatives do not appear explicitly
C in the function G(T,Y,YPRIME)). You must set:
C IWORK(LID+I) = +1 if Y(I) is a differential variable
C IWORK(LID+I) = -1 if Y(I) is an algebraic variable,
C where LID = 40 if INFO(10) = 0 or 2 and LID = 40+NEQ
C if INFO(10) = 1 or 3.
C
C INFO(12) - Except for the addition of the RES argument CJ,
C DDASKR by default is downward-compatible with DDASSL,
C which uses only direct (dense or band) methods to solve
C the linear systems involved. You must set INFO(12) to
C indicate whether you want the direct methods or the
C Krylov iterative method.
C **** Do you want DDASKR to use standard direct methods
C (dense or band) or the Krylov (iterative) method ...
C direct methods - set INFO(12) = 0.
C Krylov method - set INFO(12) = 1,
C and check the settings of INFO(13) and INFO(15).
C
C INFO(13) - used when INFO(12) = 1 (Krylov methods).
C DDASKR uses scalars MAXL, KMP, NRMAX, and EPLI for the
C iterative solution of linear systems. INFO(13) allows
C you to override the default values of these parameters.
C These parameters and their defaults are as follows:
C MAXL = maximum number of iterations in the SPIGMR
C algorithm (MAXL .le. NEQ). The default is
C MAXL = MIN(5,NEQ).
C KMP = number of vectors on which orthogonalization is
C done in the SPIGMR algorithm. The default is
C KMP = MAXL, which corresponds to complete GMRES
C iteration, as opposed to the incomplete form.
C NRMAX = maximum number of restarts of the SPIGMR
C algorithm per nonlinear iteration. The default is
C NRMAX = 5.
C EPLI = convergence test constant in SPIGMR algorithm.
C The default is EPLI = 0.05.
C Note that the length of RWORK depends on both MAXL
C and KMP. See the definition of LRW below.
C **** Are MAXL, KMP, and EPLI to be given their
C default values ...
C yes - set INFO(13) = 0
C no - set INFO(13) = 1,
C and set all of the following:
C IWORK(24) = MAXL (1 .le. MAXL .le. NEQ)
C IWORK(25) = KMP (1 .le. KMP .le. MAXL)
C IWORK(26) = NRMAX (NRMAX .ge. 0)
C RWORK(10) = EPLI (0 .lt. EPLI .lt. 1.0) ****
C
C INFO(14) - used with INFO(11) > 0 (initial condition
C calculation is requested). In this case, you may
C request control to be returned to the calling program
C immediately after the initial condition calculation,
C before proceeding to the integration of the system
C (e.g. to examine the computed Y and YPRIME).
C If this is done, and if the initialization succeeded
C (IDID = 4), you should reset INFO(11) to 0 for the
C next call, to prevent the solver from repeating the
C initialization (and to avoid an infinite loop).
C **** Do you want to proceed to the integration after
C the initial condition calculation is done ...
C yes - set INFO(14) = 0
C no - set INFO(14) = 1 ****
C
C INFO(15) - used when INFO(12) = 1 (Krylov methods).
C When using preconditioning in the Krylov method,
C you must supply a subroutine, PSOL, which solves the
C associated linear systems using P.
C The usage of DDASKR is simpler if PSOL can carry out
C the solution without any prior calculation of data.
C However, if some partial derivative data is to be
C calculated in advance and used repeatedly in PSOL,
C then you must supply a JAC routine to do this,
C and set INFO(15) to indicate that JAC is to be called
C for this purpose. For example, P might be an
C approximation to a part of the matrix A which can be
C calculated and LU-factored for repeated solutions of
C the preconditioner system. The arrays WP and IWP
C (described under JAC and PSOL) can be used to
C communicate data between JAC and PSOL.
C **** Does PSOL operate with no prior preparation ...
C yes - set INFO(15) = 0 (no JAC routine)
C no - set INFO(15) = 1
C and supply a JAC routine to evaluate and
C preprocess any required Jacobian data. ****
C
C INFO(16) - option to exclude algebraic variables from
C the error test.
C **** Do you wish to control errors locally on
C all the variables...
C yes - set INFO(16) = 0
C no - set INFO(16) = 1
C If you have specified INFO(16) = 1, then you
C will also need to identify which are the
C differential and which are the algebraic
C components (algebraic components are components
C whose derivatives do not appear explicitly
C in the function G(T,Y,YPRIME)). You must set:
C IWORK(LID+I) = +1 if Y(I) is a differential
C variable, and
C IWORK(LID+I) = -1 if Y(I) is an algebraic
C variable,
C where LID = 40 if INFO(10) = 0 or 2 and
C LID = 40 + NEQ if INFO(10) = 1 or 3.
C
C INFO(17) - used when INFO(11) > 0 (DDASKR is to do an
C initial condition calculation).
C DDASKR uses several heuristic control quantities in the
C initial condition calculation. They have default values,
C but can also be set by the user using INFO(17).
C These parameters and their defaults are as follows:
C MXNIT = maximum number of Newton iterations
C per Jacobian or preconditioner evaluation.
C The default is:
C MXNIT = 5 in the direct case (INFO(12) = 0), and
C MXNIT = 15 in the Krylov case (INFO(12) = 1).
C MXNJ = maximum number of Jacobian or preconditioner
C evaluations. The default is:
C MXNJ = 6 in the direct case (INFO(12) = 0), and
C MXNJ = 2 in the Krylov case (INFO(12) = 1).
C MXNH = maximum number of values of the artificial
C stepsize parameter H to be tried if INFO(11) = 1.
C The default is MXNH = 5.
C NOTE: the maximum number of Newton iterations
C allowed in all is MXNIT*MXNJ*MXNH if INFO(11) = 1,
C and MXNIT*MXNJ if INFO(11) = 2.
C LSOFF = flag to turn off the linesearch algorithm
C (LSOFF = 0 means linesearch is on, LSOFF = 1 means
C it is turned off). The default is LSOFF = 0.
C STPTOL = minimum scaled step in linesearch algorithm.
C The default is STPTOL = (unit roundoff)**(2/3).
C EPINIT = swing factor in the Newton iteration convergence
C test. The test is applied to the residual vector,
C premultiplied by the approximate Jacobian (in the
C direct case) or the preconditioner (in the Krylov
C case). For convergence, the weighted RMS norm of
C this vector (scaled by the error weights) must be
C less than EPINIT*EPCON, where EPCON = .33 is the
C analogous test constant used in the time steps.
C The default is EPINIT = .01.
C **** Are the initial condition heuristic controls to be
C given their default values...
C yes - set INFO(17) = 0
C no - set INFO(17) = 1,
C and set all of the following:
C IWORK(32) = MXNIT (.GT. 0)
C IWORK(33) = MXNJ (.GT. 0)
C IWORK(34) = MXNH (.GT. 0)
C IWORK(35) = LSOFF ( = 0 or 1)
C RWORK(14) = STPTOL (.GT. 0.0)
C RWORK(15) = EPINIT (.GT. 0.0) ****
C
C INFO(18) - option to get extra printing in initial condition
C calculation.
C **** Do you wish to have extra printing...
C no - set INFO(18) = 0
C yes - set INFO(18) = 1 for minimal printing, or
C set INFO(18) = 2 for full printing.
C If you have specified INFO(18) .ge. 1, data
C will be printed with the error handler routines.
C To print to a non-default unit number L, include
C the line CALL XSETUN(L) in your program. ****
C
C RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
C error tolerances to tell the code how accurately you
C want the solution to be computed. They must be defined
C as variables because the code may change them.
C you have two choices --
C Both RTOL and ATOL are scalars (INFO(2) = 0), or
C both RTOL and ATOL are vectors (INFO(2) = 1).
C In either case all components must be non-negative.
C
C The tolerances are used by the code in a local error
C test at each step which requires roughly that
C abs(local error in Y(i)) .le. EWT(i) ,
C where EWT(i) = RTOL*abs(Y(i)) + ATOL is an error weight
C quantity, for each vector component.
C (More specifically, a root-mean-square norm is used to
C measure the size of vectors, and the error test uses the
C magnitude of the solution at the beginning of the step.)
C
C The true (global) error is the difference between the
C true solution of the initial value problem and the
C computed approximation. Practically all present day
C codes, including this one, control the local error at
C each step and do not even attempt to control the global
C error directly.
C
C Usually, but not always, the true accuracy of
C the computed Y is comparable to the error tolerances.
C This code will usually, but not always, deliver a more
C accurate solution if you reduce the tolerances and
C integrate again. By comparing two such solutions you
C can get a fairly reliable idea of the true error in the
C solution at the larger tolerances.
C
C Setting ATOL = 0. results in a pure relative error test
C on that component. Setting RTOL = 0. results in a pure
C absolute error test on that component. A mixed test
C with non-zero RTOL and ATOL corresponds roughly to a
C relative error test when the solution component is
C much bigger than ATOL and to an absolute error test
C when the solution component is smaller than the
C threshold ATOL.
C
C The code will not attempt to compute a solution at an
C accuracy unreasonable for the machine being used. It
C will advise you if you ask for too much accuracy and
C inform you as to the maximum accuracy it believes
C possible.
C
C RWORK(*) -- a real work array, which should be dimensioned in your
C calling program with a length equal to the value of
C LRW (or greater).
C
C LRW -- Set it to the declared length of the RWORK array. The
C minimum length depends on the options you have selected,
C given by a base value plus additional storage as
C described below.
C
C If INFO(12) = 0 (standard direct method), the base value
C is BASE = 60 + max(MAXORD+4,7)*NEQ + 3*NRT.
C The default value is MAXORD = 5 (see INFO(9)). With the
C default MAXORD, BASE = 60 + 9*NEQ + 3*NRT.
C Additional storage must be added to the base value for
C any or all of the following options:
C If INFO(6) = 0 (dense matrix), add NEQ**2.
C If INFO(6) = 1 (banded matrix), then:
C if INFO(5) = 0, add (2*ML+MU+1)*NEQ
C + 2*[NEQ/(ML+MU+1) + 1], and
C if INFO(5) = 1, add (2*ML+MU+1)*NEQ.
C If INFO(16) = 1, add NEQ.
C
C If INFO(12) = 1 (Krylov method), the base value is
C BASE = 60 + (MAXORD+5)*NEQ + 3*NRT
C + [MAXL + 3 + min(1,MAXL-KMP)]*NEQ
C + (MAXL+3)*MAXL + 1 + LENWP.
C See PSOL for description of LENWP. The default values
C are: MAXORD = 5 (see INFO(9)), MAXL = min(5,NEQ) and
C KMP = MAXL (see INFO(13)). With these default values,
C BASE = 101 + 18*NEQ + 3*NRT + LENWP.
C Additional storage must be added to the base value for
C the following option:
C If INFO(16) = 1, add NEQ.
C
C
C IWORK(*) -- an integer work array, which should be dimensioned in
C your calling program with a length equal to the value
C of LIW (or greater).
C
C LIW -- Set it to the declared length of the IWORK array. The
C minimum length depends on the options you have selected,
C given by a base value plus additions as described below.
C
C If INFO(12) = 0 (standard direct method), the base value
C is BASE = 40 + NEQ.
C IF INFO(10) = 1 or 3, add NEQ to the base value.
C If INFO(11) = 1 or INFO(16) =1, add NEQ to the base value.
C
C If INFO(12) = 1 (Krylov method), the base value is
C BASE = 40 + LENIWP. See PSOL for description of LENIWP.
C If INFO(10) = 1 or 3, add NEQ to the base value.
C If INFO(11) = 1 or INFO(16) =1, add NEQ to the base value.
C >> Due to introduction of Mask in DASKR, NRT has been added
c to the LIW
C
c
C RPAR, IPAR -- These are arrays of double precision and integer type,
C respectively, which are available for you to use
C for communication between your program that calls
C DDASKR and the RES subroutine (and the JAC and PSOL
C subroutines). They are not altered by DDASKR.
C If you do not need RPAR or IPAR, ignore these
C parameters by treating them as dummy arguments.
C If you do choose to use them, dimension them in
C your calling program and in RES (and in JAC and PSOL)
C as arrays of appropriate length.
C
C JAC -- This is the name of a routine that you may supply
C (optionally) that relates to the Jacobian matrix of the
C nonlinear system that the code must solve at each T step.
C The role of JAC (and its call sequence) depends on whether
C a direct (INFO(12) = 0) or Krylov (INFO(12) = 1) method
C is selected.
C
C **** INFO(12) = 0 (direct methods):
C If you are letting the code generate partial derivatives
C numerically (INFO(5) = 0), then JAC can be absent
C (or perhaps a dummy routine to satisfy the loader).
C Otherwise you must supply a JAC routine to compute
C the matrix A = dG/dY + CJ*dG/dYPRIME. It must have
C the form
C
C SUBROUTINE JAC (T, Y, YPRIME, PD, CJ, RPAR, IPAR)
C
C The JAC routine must dimension Y, YPRIME, and PD (and RPAR
C and IPAR if used). CJ is a scalar which is input to JAC.
C For the given values of T, Y, and YPRIME, the JAC routine
C must evaluate the nonzero elements of the matrix A, and
C store these values in the array PD. The elements of PD are
C set to zero before each call to JAC, so that only nonzero
C elements need to be defined.
C The way you store the elements into the PD array depends
C on the structure of the matrix indicated by INFO(6).
C *** INFO(6) = 0 (full or dense matrix) ***
C Give PD a first dimension of NEQ. When you evaluate the
C nonzero partial derivatives of equation i (i.e. of G(i))
C with respect to component j (of Y and YPRIME), you must
C store the element in PD according to
C PD(i,j) = dG(i)/dY(j) + CJ*dG(i)/dYPRIME(j).
C *** INFO(6) = 1 (banded matrix with half-bandwidths ML, MU
C as described under INFO(6)) ***
C Give PD a first dimension of 2*ML+MU+1. When you
C evaluate the nonzero partial derivatives of equation i
C (i.e. of G(i)) with respect to component j (of Y and
C YPRIME), you must store the element in PD according to
C IROW = i - j + ML + MU + 1
C PD(IROW,j) = dG(i)/dY(j) + CJ*dG(i)/dYPRIME(j).
C
C **** INFO(12) = 1 (Krylov method):
C If you are not calculating Jacobian data in advance for use
C in PSOL (INFO(15) = 0), JAC can be absent (or perhaps a
C dummy routine to satisfy the loader). Otherwise, you may
C supply a JAC routine to compute and preprocess any parts of
C of the Jacobian matrix A = dG/dY + CJ*dG/dYPRIME that are
C involved in the preconditioner matrix P.
C It is to have the form
C
C SUBROUTINE JAC (RES, IRES, NEQ, T, Y, YPRIME, REWT, SAVR,
C WK, H, CJ, WP, IWP, IER, RPAR, IPAR)
C
C The JAC routine must dimension Y, YPRIME, REWT, SAVR, WK,
C and (if used) WP, IWP, RPAR, and IPAR.
C The Y, YPRIME, and SAVR arrays contain the current values
C of Y, YPRIME, and the residual G, respectively.
C The array WK is work space of length NEQ.
C H is the step size. CJ is a scalar, input to JAC, that is
C normally proportional to 1/H. REWT is an array of
C reciprocal error weights, 1/EWT(i), where EWT(i) is
C RTOL*abs(Y(i)) + ATOL (unless you supplied routine DDAWTS
C instead), for use in JAC if needed. For example, if JAC
C computes difference quotient approximations to partial
C derivatives, the REWT array may be useful in setting the
C increments used. The JAC routine should do any
C factorization operations called for, in preparation for
C solving linear systems in PSOL. The matrix P should
C be an approximation to the Jacobian,
C A = dG/dY + CJ*dG/dYPRIME.
C
C WP and IWP are real and integer work arrays which you may
C use for communication between your JAC routine and your
C PSOL routine. These may be used to store elements of the
C preconditioner P, or related matrix data (such as factored
C forms). They are not altered by DDASKR.
C If you do not need WP or IWP, ignore these parameters by
C treating them as dummy arguments. If you do use them,
C dimension them appropriately in your JAC and PSOL routines.
C See the PSOL description for instructions on setting
C the lengths of WP and IWP.
C
C On return, JAC should set the error flag IER as follows..
C IER = 0 if JAC was successful,
C IER .ne. 0 if JAC was unsuccessful (e.g. if Y or YPRIME
C was illegal, or a singular matrix is found).
C (If IER .ne. 0, a smaller stepsize will be tried.)
C IER = 0 on entry to JAC, so need be reset only on a failure.
C If RES is used within JAC, then a nonzero value of IRES will
C override any nonzero value of IER (see the RES description).
C
C Regardless of the method type, subroutine JAC must not
C alter T, Y(*), YPRIME(*), H, CJ, or REWT(*).
C You must declare the name JAC in an EXTERNAL statement in
C your program that calls DDASKR.
C
C PSOL -- This is the name of a routine you must supply if you have
C selected a Krylov method (INFO(12) = 1) with preconditioning.
C In the direct case (INFO(12) = 0), PSOL can be absent
C (a dummy routine may have to be supplied to satisfy the
C loader). Otherwise, you must provide a PSOL routine to
C solve linear systems arising from preconditioning.
C When supplied with INFO(12) = 1, the PSOL routine is to
C have the form
C
C SUBROUTINE PSOL (NEQ, T, Y, YPRIME, SAVR, WK, CJ, WGHT,
C WP, IWP, B, EPLIN, IER, RPAR, IPAR)
C
C The PSOL routine must solve linear systems of the form
C P*x = b where P is the left preconditioner matrix.
C
C The right-hand side vector b is in the B array on input, and
C PSOL must return the solution vector x in B.
C The Y, YPRIME, and SAVR arrays contain the current values
C of Y, YPRIME, and the residual G, respectively.
C
C Work space required by JAC and/or PSOL, and space for data to
C be communicated from JAC to PSOL is made available in the form
C of arrays WP and IWP, which are parts of the RWORK and IWORK
C arrays, respectively. The lengths of these real and integer
C work spaces WP and IWP must be supplied in LENWP and LENIWP,
C respectively, as follows..
C IWORK(27) = LENWP = length of real work space WP
C IWORK(28) = LENIWP = length of integer work space IWP.
C
C WK is a work array of length NEQ for use by PSOL.
C CJ is a scalar, input to PSOL, that is normally proportional
C to 1/H (H = stepsize). If the old value of CJ
C (at the time of the last JAC call) is needed, it must have
C been saved by JAC in WP.
C
C WGHT is an array of weights, to be used if PSOL uses an
C iterative method and performs a convergence test. (In terms
C of the argument REWT to JAC, WGHT is REWT/sqrt(NEQ).)
C If PSOL uses an iterative method, it should use EPLIN
C (a heuristic parameter) as the bound on the weighted norm of
C the residual for the computed solution. Specifically, the
C residual vector R should satisfy
C SQRT (SUM ( (R(i)*WGHT(i))**2 ) ) .le. EPLIN
C
C PSOL must not alter NEQ, T, Y, YPRIME, SAVR, CJ, WGHT, EPLIN.
C
C On return, PSOL should set the error flag IER as follows..
C IER = 0 if PSOL was successful,
C IER .lt. 0 if an unrecoverable error occurred, meaning
C control will be passed to the calling routine,
C IER .gt. 0 if a recoverable error occurred, meaning that
C the step will be retried with the same step size
C but with a call to JAC to update necessary data,
C unless the Jacobian data is current, in which case
C the step will be retried with a smaller step size.
C IER = 0 on entry to PSOL so need be reset only on a failure.
C
C You must declare the name PSOL in an EXTERNAL statement in
C your program that calls DDASKR.
C
C RT -- This is the name of the subroutine for defining the vector
C R(T,Y,Y') of constraint functions Ri(T,Y,Y'), whose roots
C are desired during the integration. It is to have the form
C SUBROUTINE RT(NEQ, T, Y, YP, NRT, RVAL, RPAR, IPAR)
C DIMENSION Y(NEQ), YP(NEQ), RVAL(NRT),
C where NEQ, T, Y and NRT are INPUT, and the array RVAL is
C output. NEQ, T, Y, and YP have the same meaning as in the
C RES routine, and RVAL is an array of length NRT.
C For i = 1,...,NRT, this routine is to load into RVAL(i) the
C value at (T,Y,Y') of the i-th constraint function Ri(T,Y,Y').
C DDASKR will find roots of the Ri of odd multiplicity
C (that is, sign changes) as they occur during the integration.
C RT must be declared EXTERNAL in the calling program.
C
C CAUTION.. Because of numerical errors in the functions Ri
C due to roundoff and integration error, DDASKR may return
C false roots, or return the same root at two or more nearly
C equal values of T. If such false roots are suspected,
C the user should consider smaller error tolerances and/or
C higher precision in the evaluation of the Ri.
C
C If a root of some Ri defines the end of the problem,
C the input to DDASKR should nevertheless allow
C integration to a point slightly past that root, so
C that DDASKR can locate the root by interpolation.
C
C NRT -- The number of constraint functions Ri(T,Y,Y'). If there are
C no constraints, set NRT = 0 and pass a dummy name for RT.
C
C JROOT -- This is an integer array of length NRT, used only for output.
C On a return where one or more roots were found (IDID = 5),
C JROOT(i) = 1 or -1 if Ri(T,Y,Y') has a root at T, and
C JROOT(i) = 0 if not. If nonzero, JROOT(i) shows the direction
C of the sign change in Ri in the direction of integration:
C JROOT(i) = 1 means Ri changed from negative to positive.
C JROOT(i) = -1 means Ri changed from positive to negative.
C
C
C OPTIONALLY REPLACEABLE SUBROUTINE:
C
C DDASKR uses a weighted root-mean-square norm to measure the
C size of various error vectors. The weights used in this norm
C are set in the following subroutine:
C
C SUBROUTINE DDAWTS1 (NEQ, IWT, RTOL, ATOL, Y, EWT, RPAR, IPAR)
C DIMENSION RTOL(*), ATOL(*), Y(*), EWT(*), RPAR(*), IPAR(*)
C
C A DDAWTS routine has been included with DDASKR which sets the
C weights according to
C EWT(I) = RTOL*ABS(Y(I)) + ATOL
C in the case of scalar tolerances (IWT = 0) or
C EWT(I) = RTOL(I)*ABS(Y(I)) + ATOL(I)
C in the case of array tolerances (IWT = 1). (IWT is INFO(2).)
C In some special cases, it may be appropriate for you to define
C your own error weights by writing a subroutine DDAWTS to be
C called instead of the version supplied. However, this should
C be attempted only after careful thought and consideration.
C If you supply this routine, you may use the tolerances and Y
C as appropriate, but do not overwrite these variables. You
C may also use RPAR and IPAR to communicate data as appropriate.
C ***Note: Aside from the values of the weights, the choice of
C norm used in DDASKR (weighted root-mean-square) is not subject
C to replacement by the user. In this respect, DDASKR is not
C downward-compatible with the original DDASSL solver (in which
C the norm routine was optionally user-replaceable).
C
C
C------OUTPUT - AFTER ANY RETURN FROM DDASKR----------------------------
C
C The principal aim of the code is to return a computed solution at
C T = TOUT, although it is also possible to obtain intermediate
C results along the way. To find out whether the code achieved its
C goal or if the integration process was interrupted before the task
C was completed, you must check the IDID parameter.
C
C
C T -- The output value of T is the point to which the solution
C was successfully advanced.
C
C Y(*) -- contains the computed solution approximation at T.
C
C YPRIME(*) -- contains the computed derivative approximation at T.
C
C IDID -- reports what the code did, described as follows:
C
C *** TASK COMPLETED ***
C Reported by positive values of IDID
C
C IDID = 1 -- A step was successfully taken in the
C interval-output mode. The code has not
C yet reached TOUT.
C
C IDID = 2 -- The integration to TSTOP was successfully
C completed (T = TSTOP) by stepping exactly to TSTOP.
C
C IDID = 3 -- The integration to TOUT was successfully
C completed (T = TOUT) by stepping past TOUT.
C Y(*) and YPRIME(*) are obtained by interpolation.
C
C IDID = 4 -- The initial condition calculation, with
C INFO(11) > 0, was successful, and INFO(14) = 1.
C No integration steps were taken, and the solution
C is not considered to have been started.
C
C IDID = 5 -- The integration was successfully completed
C by finding one or more roots of R(T,Y,Y') at T.
C IDID = 6 -- The integration was successfully completed
C by finding A ROOT, LIFTED FROM ZERO.
c
c
C *** TASK INTERRUPTED ***
C Reported by negative values of IDID
C
C IDID = -1 -- A large amount of work has been expended
C (about 500 steps).
C
C IDID = -2 -- The error tolerances are too stringent.
C
C IDID = -3 -- The local error test cannot be satisfied
C because you specified a zero component in ATOL
C and the corresponding computed solution component
C is zero. Thus, a pure relative error test is
C impossible for this component.
C
C IDID = -5 -- There were repeated failures in the evaluation
C or processing of the preconditioner (in JAC).
C
C IDID = -6 -- DDASKR had repeated error test failures on the
C last attempted step.
C
C IDID = -7 -- The nonlinear system solver in the time
C integration could not converge.
C
C IDID = -8 -- The matrix of partial derivatives appears
C to be singular (direct method).
C
C IDID = -9 -- The nonlinear system solver in the integration
C failed to achieve convergence, and there were
C repeated error test failures in this step.
C
C IDID =-10 -- The nonlinear system solver in the integration
C failed to achieve convergence because IRES was
C equal to -1.
C
C IDID =-11 -- IRES = -2 was encountered and control is
C being returned to the calling program.
C
C IDID =-12 -- DDASKR failed to compute the initial Y, YPRIME.
C
C IDID =-13 -- An unrecoverable error was encountered inside
C the user's PSOL routine, and control is being
C returned to the calling program.
C
C IDID =-14 -- The Krylov linear system solver could not
C achieve convergence.
C
c
C IDID =-15,..,-32 -- Not applicable for this code.
c
C
C *** TASK TERMINATED ***
C reported by the value of IDID=-33
C
C IDID = -33 -- The code has encountered trouble from which
C it cannot recover. A message is printed
C explaining the trouble and control is returned
C to the calling program. For example, this occurs
C when invalid input is detected.
C
C RTOL, ATOL -- these quantities remain unchanged except when
C IDID = -2. In this case, the error tolerances have been
C increased by the code to values which are estimated to
C be appropriate for continuing the integration. However,
C the reported solution at T was obtained using the input
C values of RTOL and ATOL.
C
C RWORK, IWORK -- contain information which is usually of no interest
C to the user but necessary for subsequent calls.
C However, you may be interested in the performance data
C listed below. These quantities are accessed in RWORK
C and IWORK but have internal mnemonic names, as follows..
C
C RWORK(3)--contains H, the step size h to be attempted
C on the next step.
C
C RWORK(4)--contains TN, the current value of the
C independent variable, i.e. the farthest point
C integration has reached. This will differ
C from T if interpolation has been performed
C (IDID = 3).
C
C RWORK(7)--contains HOLD, the stepsize used on the last
C successful step. If INFO(11) = INFO(14) = 1,
C this contains the value of H used in the
C initial condition calculation.
C
C IWORK(7)--contains K, the order of the method to be
C attempted on the next step.
C
C IWORK(8)--contains KOLD, the order of the method used
C on the last step.
C
C IWORK(11)--contains NST, the number of steps (in T)
C taken so far.
C
C IWORK(12)--contains NRE, the number of calls to RES
C so far.
C
C IWORK(13)--contains NJE, the number of calls to JAC so
C far (Jacobian or preconditioner evaluations).
C
C IWORK(14)--contains NETF, the total number of error test
C failures so far.
C
C IWORK(15)--contains NCFN, the total number of nonlinear
C convergence failures so far (includes counts
C of singular iteration matrix or singular
C preconditioners).
C
C IWORK(16)--contains NCFL, the number of convergence
C failures of the linear iteration so far.
C
C IWORK(17)--contains LENIW, the length of IWORK actually
C required. This is defined on normal returns
C and on an illegal input return for
C insufficient storage.
C
C IWORK(18)--contains LENRW, the length of RWORK actually
C required. This is defined on normal returns
C and on an illegal input return for
C insufficient storage.
C
C IWORK(19)--contains NNI, the total number of nonlinear
C iterations so far (each of which calls a
C linear solver).
C
C IWORK(20)--contains NLI, the total number of linear
C (Krylov) iterations so far.
C
C IWORK(21)--contains NPS, the number of PSOL calls so
C far, for preconditioning solve operations or
C for solutions with the user-supplied method.
C
C IWORK(36)--contains the total number of calls to the
C constraint function routine RT so far.
C
C Note: The various counters in IWORK do not include
C counts during a prior call made with INFO(11) > 0 and
C INFO(14) = 1.
C
C
C------INPUT - WHAT TO DO TO CONTINUE THE INTEGRATION -----------------
C (CALLS AFTER THE FIRST)
C
C This code is organized so that subsequent calls to continue the
C integration involve little (if any) additional effort on your
C part. You must monitor the IDID parameter in order to determine
C what to do next.
C
C Recalling that the principal task of the code is to integrate
C from T to TOUT (the interval mode), usually all you will need
C to do is specify a new TOUT upon reaching the current TOUT.
C
C Do not alter any quantity not specifically permitted below. In
C particular do not alter NEQ, T, Y(*), YPRIME(*), RWORK(*),
C IWORK(*), or the differential equation in subroutine RES. Any
C such alteration constitutes a new problem and must be treated
C as such, i.e. you must start afresh.
C
C You cannot change from array to scalar error control or vice
C versa (INFO(2)), but you can change the size of the entries of
C RTOL or ATOL. Increasing a tolerance makes the equation easier
C to integrate. Decreasing a tolerance will make the equation
C harder to integrate and should generally be avoided.
C
C You can switch from the intermediate-output mode to the
C interval mode (INFO(3)) or vice versa at any time.
C
C If it has been necessary to prevent the integration from going
C past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
C code will not integrate to any TOUT beyond the currently
C specified TSTOP. Once TSTOP has been reached, you must change
C the value of TSTOP or set INFO(4) = 0. You may change INFO(4)
C or TSTOP at any time but you must supply the value of TSTOP in
C RWORK(1) whenever you set INFO(4) = 1.
C
C Do not change INFO(5), INFO(6), INFO(12-17) or their associated
C IWORK/RWORK locations unless you are going to restart the code.
C
C *** FOLLOWING A COMPLETED TASK ***
C
C If..
C IDID = 1, call the code again to continue the integration
C another step in the direction of TOUT.
C
C IDID = 2 or 3, define a new TOUT and call the code again.
C TOUT must be different from T. You cannot change
C the direction of integration without restarting.
C
C IDID = 4, reset INFO(11) = 0 and call the code again to begin
C the integration. (If you leave INFO(11) > 0 and
C INFO(14) = 1, you may generate an infinite loop.)
C In this situation, the next call to DDASKR is
C considered to be the first call for the problem,
C in that all initializations are done.
C
C IDID = 5, call the code again to continue the integration in the
C direction of TOUT. You may change the functions
C Ri defined by RT after a return with IDID = 5, but
C the number of constraint functions NRT must remain
C the same. If you wish to change the functions in
C RES or in RT, then you must restart the code.
C
C *** FOLLOWING AN INTERRUPTED TASK ***
C
C To show the code that you realize the task was interrupted and
C that you want to continue, you must take appropriate action and
C set INFO(1) = 1.
C
C If..
C IDID = -1, the code has taken about 500 steps. If you want to
C continue, set INFO(1) = 1 and call the code again.
C An additional 500 steps will be allowed.
C
C
C IDID = -2, the error tolerances RTOL, ATOL have been increased
C to values the code estimates appropriate for
C continuing. You may want to change them yourself.
C If you are sure you want to continue with relaxed
C error tolerances, set INFO(1) = 1 and call the code
C again.
C
C IDID = -3, a solution component is zero and you set the
C corresponding component of ATOL to zero. If you
C are sure you want to continue, you must first alter
C the error criterion to use positive values of ATOL
C for those components corresponding to zero solution
C components, then set INFO(1) = 1 and call the code
C again.
C
C IDID = -4 --- cannot occur with this code.
C
C IDID = -5, your JAC routine failed with the Krylov method. Check
C for errors in JAC and restart the integration.
C
C IDID = -6, repeated error test failures occurred on the last
C attempted step in DDASKR. A singularity in the
C solution may be present. If you are absolutely
C certain you want to continue, you should restart
C the integration. (Provide initial values of Y and
C YPRIME which are consistent.)
C
C IDID = -7, repeated convergence test failures occurred on the last
C attempted step in DDASKR. An inaccurate or ill-
C conditioned Jacobian or preconditioner may be the
C problem. If you are absolutely certain you want
C to continue, you should restart the integration.
C
C
C IDID = -8, the matrix of partial derivatives is singular, with
C the use of direct methods. Some of your equations
C may be redundant. DDASKR cannot solve the problem
C as stated. It is possible that the redundant
C equations could be removed, and then DDASKR could
C solve the problem. It is also possible that a
C solution to your problem either does not exist
C or is not unique.
C
C IDID = -9, DDASKR had multiple convergence test failures, preceded
C by multiple error test failures, on the last
C attempted step. It is possible that your problem is
C ill-posed and cannot be solved using this code. Or,
C there may be a discontinuity or a singularity in the
C solution. If you are absolutely certain you want to
C continue, you should restart the integration.
C
C IDID = -10, DDASKR had multiple convergence test failures
C because IRES was equal to -1. If you are
C absolutely certain you want to continue, you
C should restart the integration.
C
C IDID = -11, there was an unrecoverable error (IRES = -2) from RES
C inside the nonlinear system solver. Determine the
C cause before trying again.
C
C IDID = -12, DDASKR failed to compute the initial Y and YPRIME
C vectors. This could happen because the initial
C approximation to Y or YPRIME was not very good, or
C because no consistent values of these vectors exist.
C The problem could also be caused by an inaccurate or
C singular iteration matrix, or a poor preconditioner.
C
C IDID = -13, there was an unrecoverable error encountered inside
C your PSOL routine. Determine the cause before
C trying again.
C
C IDID = -14, the Krylov linear system solver failed to achieve
C convergence. This may be due to ill-conditioning
C in the iteration matrix, or a singularity in the
C preconditioner (if one is being used).
C Another possibility is that there is a better
C choice of Krylov parameters (see INFO(13)).
C Possibly the failure is caused by redundant equations
C in the system, or by inconsistent equations.
C In that case, reformulate the system to make it
C consistent and non-redundant.
C
C IDID = -15,..,-32 --- Cannot occur with this code.
C
C *** FOLLOWING A TERMINATED TASK ***
C
C If IDID = -33, you cannot continue the solution of this problem.
C An attempt to do so will result in your run being
C terminated.
C
C ---------------------------------------------------------------------
C
C***REFERENCES
C 1. L. R. Petzold, A Description of DASSL: A Differential/Algebraic
C System Solver, in Scientific Computing, R. S. Stepleman et al.
C (Eds.), North-Holland, Amsterdam, 1983, pp. 65-68.
C 2. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical
C Solution of Initial-Value Problems in Differential-Algebraic
C Equations, Elsevier, New York, 1989.
C 3. P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods
C in Stiff ODE Systems, J. Applied Mathematics and Computation,
C 31 (1989), pp. 40-91.
C 4. P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov
C Methods in the Solution of Large-Scale Differential-Algebraic
C Systems, SIAM J. Sci. Comp., 15 (1994), pp. 1467-1488.
C 5. P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Consistent
C Initial Condition Calculation for Differential-Algebraic
C Systems, SIAM J. Sci. Comp. 19 (1998), pp. 1495-1512.
C
C***ROUTINES CALLED
C
C The following are all the subordinate routines used by DDASKR.
C
C DRCHEK does preliminary checking for roots, and serves as an
C interface between Subroutine DDASKR and Subroutine DROOTS.
C DROOTS finds the leftmost root of a set of functions.
C DDASIC computes consistent initial conditions.
C DYYPNW updates Y and YPRIME in linesearch for initial condition
C calculation.
C DDSTP carries out one step of the integration.
C DCNSTR/DCNST0 check the current solution for constraint violations.
C DDAWTS sets error weight quantities.
C DINVWT tests and inverts the error weights.
C DDATRP performs interpolation to get an output solution.
C DDWNRM computes the weighted root-mean-square norm of a vector.
C D1MACH provides the unit roundoff of the computer.
C XERRWD/XSETF/XSETUN/IXSAV is a package to handle error messages.
C DDASID nonlinear equation driver to initialize Y and YPRIME using
C direct linear system solver methods. Interfaces to Newton
C solver (direct case).
C DNSID solves the nonlinear system for unknown initial values by
C modified Newton iteration and direct linear system methods.
C DLINSD carries out linesearch algorithm for initial condition
C calculation (direct case).
C DFNRMD calculates weighted norm of preconditioned residual in
C initial condition calculation (direct case).
C DNEDD nonlinear equation driver for direct linear system solver
C methods. Interfaces to Newton solver (direct case).
C DMATD assembles the iteration matrix (direct case).
C DNSD solves the associated nonlinear system by modified
C Newton iteration and direct linear system methods.
C DSLVD interfaces to linear system solver (direct case).
C DDASIK nonlinear equation driver to initialize Y and YPRIME using
C Krylov iterative linear system methods. Interfaces to
C Newton solver (Krylov case).
C DNSIK solves the nonlinear system for unknown initial values by
C Newton iteration and Krylov iterative linear system methods.
C DLINSK carries out linesearch algorithm for initial condition
C calculation (Krylov case).
C DFNRMK calculates weighted norm of preconditioned residual in
C initial condition calculation (Krylov case).
C DNEDK nonlinear equation driver for iterative linear system solver
C methods. Interfaces to Newton solver (Krylov case).
C DNSK solves the associated nonlinear system by Inexact Newton
C iteration and (linear) Krylov iteration.
C DSLVK interfaces to linear system solver (Krylov case).
C DSPIGM solves a linear system by SPIGMR algorithm.
C DATV computes matrix-vector product in Krylov algorithm.
C DORTH performs orthogonalization of Krylov basis vectors.
C DHEQR performs QR factorization of Hessenberg matrix.
C DHELS finds least-squares solution of Hessenberg linear system.
C DGEFA, DGESL, DGBFA, DGBSL are LINPACK routines for solving
C linear systems (dense or band direct methods).
C DAXPY, DCOPY, DDOT, DNRM2, DSCAL are Basic Linear Algebra (BLAS)
C routines.
C
C The routines called directly by DDASKR are:
C DCNST0, DDAWTS, DINVWT, D1MACH, DDWNRM, DDASIC, DDATRP, DDSTP,
C DRCHEK, XERRWD
C
C***END PROLOGUE DDASKR
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL DONE, LAVL, LCFN, LCFL, LWARN
DIMENSION Y(*),YPRIME(*)
DIMENSION INFO(20)
DIMENSION RWORK(LRW),IWORK(LIW)
DIMENSION RTOL(*),ATOL(*)
DIMENSION RPAR(*),IPAR(*)
CHARACTER MSG*80
EXTERNAL RES, JAC, PSOL, RT, DDASID, DDASIK, DNEDD, DNEDK
C
C Set pointers into IWORK.
C
PARAMETER (LML=1, LMU=2, LMTYPE=4,
* LIWM=1, LMXORD=3, LJCALC=5, LPHASE=6, LK=7, LKOLD=8,
* LNS=9, LNSTL=10, LNST=11, LNRE=12, LNJE=13, LETF=14, LNCFN=15,
* LNCFL=16, LNIW=17, LNRW=18, LNNI=19, LNLI=20, LNPS=21,
* LNPD=22, LMITER=23, LMAXL=24, LKMP=25, LNRMAX=26, LLNWP=27,
* LLNIWP=28, LLOCWP=29, LLCIWP=30, LKPRIN=31, LMXNIT=32,
* LMXNJ=33, LMXNH=34, LLSOFF=35, LNRTE=36, LIRFND=37, LICNS=41)
C
C Set pointers into RWORK.
C
PARAMETER (LTSTOP=1, LHMAX=2, LH=3, LTN=4, LCJ=5, LCJOLD=6,
* LHOLD=7, LS=8, LROUND=9, LEPLI=10, LSQRN=11, LRSQRN=12,
* LEPCON=13, LSTOL=14, LEPIN=15, LALPHA=21, LBETA=27,
* LGAMMA=33, LPSI=39, LSIGMA=45, LT0=51, LTLAST=52, LDELTA=61)
C
SAVE LID, LENID, NONNEG, NCPHI
C
C
C***FIRST EXECUTABLE STATEMENT DDASKR
C
C
IF(INFO(1).NE.0) GO TO 100
C-----------------------------------------------------------------------
C This block is executed for the initial call only.
C It contains checking of inputs and initializations.
C-----------------------------------------------------------------------
C
C First check INFO array to make sure all elements of INFO
C Are within the proper range. (INFO(1) is checked later, because
C it must be tested on every call.) ITEMP holds the location
C within INFO which may be out of range.
C
DO 10 I=2,9
ITEMP = I
IF (INFO(I) .NE. 0 .AND. INFO(I) .NE. 1) GO TO 701
10 CONTINUE
ITEMP = 10
IF(INFO(10).LT.0 .OR. INFO(10).GT.3) GO TO 701
ITEMP = 11
IF(INFO(11).LT.0 .OR. INFO(11).GT.2) GO TO 701
DO 15 I=12,17
ITEMP = I
IF (INFO(I) .NE. 0 .AND. INFO(I) .NE. 1) GO TO 701
15 CONTINUE
ITEMP = 18
IF(INFO(18).LT.0 .OR. INFO(18).GT.2) GO TO 701
C
C Check NEQ to see if it is positive.
C
IF (NEQ .LE. 0) GO TO 702
C
C Check and compute maximum order.
C
MXORD=5
IF (INFO(9) .NE. 0) THEN
MXORD=IWORK(LMXORD)
IF (MXORD .LT. 1 .OR. MXORD .GT. 5) GO TO 703
ENDIF
IWORK(LMXORD)=MXORD
C
C Set and/or check inputs for constraint checking (INFO(10) .NE. 0).
C Set values for ICNFLG, NONNEG, and pointer LID.
C
ICNFLG = 0
NONNEG = 0
LID = LICNS
IF (INFO(10) .EQ. 0) GO TO 20
IF (INFO(10) .EQ. 1) THEN
ICNFLG = 1
NONNEG = 0
LID = LICNS + NEQ
ELSEIF (INFO(10) .EQ. 2) THEN
ICNFLG = 0
NONNEG = 1
ELSE
ICNFLG = 1
NONNEG = 1
LID = LICNS + NEQ
ENDIF
C
20 CONTINUE
C
C Set and/or check inputs for Krylov solver (INFO(12) .NE. 0).
C If indicated, set default values for MAXL, KMP, NRMAX, and EPLI.
C Otherwise, verify inputs required for iterative solver.
C
IF (INFO(12) .EQ. 0) GO TO 25
C
IWORK(LMITER) = INFO(12)
IF (INFO(13) .EQ. 0) THEN
IWORK(LMAXL) = MIN(5,NEQ)
IWORK(LKMP) = IWORK(LMAXL)
IWORK(LNRMAX) = 5
RWORK(LEPLI) = 0.05D0
ELSE
IF(IWORK(LMAXL) .LT. 1 .OR. IWORK(LMAXL) .GT. NEQ) GO TO 720
IF(IWORK(LKMP) .LT. 1 .OR. IWORK(LKMP) .GT. IWORK(LMAXL))
1 GO TO 721
IF(IWORK(LNRMAX) .LT. 0) GO TO 722
IF(RWORK(LEPLI).LE.0.0D0 .OR. RWORK(LEPLI).GE.1.0D0)GO TO 723
ENDIF
C
25 CONTINUE
C
C Set and/or check controls for the initial condition calculation
C (INFO(11) .GT. 0). If indicated, set default values.
C Otherwise, verify inputs required for iterative solver.
C
IF (INFO(11) .EQ. 0) GO TO 30
IF (INFO(17) .EQ. 0) THEN
IWORK(LMXNIT) = 5
IF (INFO(12) .GT. 0) IWORK(LMXNIT) = 15
IWORK(LMXNJ) = 6
IF (INFO(12) .GT. 0) IWORK(LMXNJ) = 2
IWORK(LMXNH) = 5
IWORK(LLSOFF) = 0
RWORK(LEPIN) = 0.01D0
ELSE
IF (IWORK(LMXNIT) .LE. 0) GO TO 725
IF (IWORK(LMXNJ) .LE. 0) GO TO 725
IF (IWORK(LMXNH) .LE. 0) GO TO 725
LSOFF = IWORK(LLSOFF)
IF (LSOFF .LT. 0 .OR. LSOFF .GT. 1) GO TO 725
IF (RWORK(LEPIN) .LE. 0.0D0) GO TO 725
ENDIF
C
30 CONTINUE
C
C Below is the computation and checking of the work array lengths
C LENIW and LENRW, using direct methods (INFO(12) = 0) or
C the Krylov methods (INFO(12) = 1).
C
LENIC = 0
IF (INFO(10) .EQ. 1 .OR. INFO(10) .EQ. 3) LENIC = NEQ
LENID = 0
IF (INFO(11) .EQ. 1 .OR. INFO(16) .EQ. 1) LENID = NEQ
IF (INFO(12) .EQ. 0) THEN
C
C Compute MTYPE, etc. Check ML and MU.
C
NCPHI = MAX(MXORD + 1, 4)
IF(INFO(6).EQ.0) THEN
LENPD = NEQ**2
LENRW = 60 + 3*NRT + (NCPHI+3)*NEQ + LENPD
IF(INFO(5).EQ.0) THEN
IWORK(LMTYPE)=2
ELSE
IWORK(LMTYPE)=1
ENDIF
ELSE
IF(IWORK(LML).LT.0.OR.IWORK(LML).GE.NEQ)GO TO 717
IF(IWORK(LMU).LT.0.OR.IWORK(LMU).GE.NEQ)GO TO 718
LENPD=(2*IWORK(LML)+IWORK(LMU)+1)*NEQ
IF(INFO(5).EQ.0) THEN
IWORK(LMTYPE)=5
MBAND=IWORK(LML)+IWORK(LMU)+1
MSAVE=(NEQ/MBAND)+1
LENRW = 60 + 3*NRT + (NCPHI+3)*NEQ + LENPD + 2*MSAVE
ELSE
IWORK(LMTYPE)=4
LENRW = 60 + 3*NRT + (NCPHI+3)*NEQ + LENPD
ENDIF
ENDIF
C
C Compute LENIW, LENWP, LENIWP.
C
LENIW = 40 + LENIC + LENID + NEQ
LENWP = 0
LENIWP = 0
C
ELSE IF (INFO(12) .EQ. 1) THEN
NCPHI = MXORD + 1
MAXL = IWORK(LMAXL)
LENWP = IWORK(LLNWP)
LENIWP = IWORK(LLNIWP)
LENPD = (MAXL+3+MIN0(1,MAXL-IWORK(LKMP)))*NEQ
1 + (MAXL+3)*MAXL + 1 + LENWP
LENRW = 60 + 3*NRT + (MXORD+5)*NEQ + LENPD
LENIW = 40 + LENIC + LENID + LENIWP
C
ENDIF
IF(INFO(16) .NE. 0) LENRW = LENRW + NEQ
C
C Check lengths of RWORK and IWORK.
C
c -------------- memory allocation for masking ----------
LENIW=LENIW+NRT
c -------------- masking ------------------------------
IWORK(LNIW)=LENIW
IWORK(LNRW)=LENRW
IWORK(LNPD)=LENPD
IWORK(LLOCWP) = LENPD-LENWP+1
IF(LRW.LT.LENRW)GO TO 704
IF(LIW.LT.LENIW)GO TO 705
C
C Check ICNSTR for legality.
C
IF (LENIC .GT. 0) THEN
DO 40 I = 1,NEQ
ICI = IWORK(LICNS-1+I)
IF (ICI .LT. -2 .OR. ICI .GT. 2) GO TO 726
40 CONTINUE
ENDIF
C
C Check Y for consistency with constraints.
C
IF (LENIC .GT. 0) THEN
CALL DCNST0(NEQ,Y,IWORK(LICNS),IRET)
IF (IRET .NE. 0) GO TO 727
ENDIF
C
C Check ID for legality and set INDEX = 0 or 1.
C
INDEX = 1
IF (LENID .GT. 0) THEN
INDEX = 0
DO 50 I = 1,NEQ
IDI = IWORK(LID-1+I)
IF (IDI .NE. 1 .AND. IDI .NE. -1) GO TO 724
IF (IDI .EQ. -1) INDEX = 1
50 CONTINUE
ENDIF
C
C Check to see that TOUT is different from T, and NRT .ge. 0.
C
IF(TOUT .EQ. T)GO TO 719
IF(NRT .LT. 0) GO TO 730
C
C Check HMAX.
C
IF(INFO(7) .NE. 0) THEN
HMAX = RWORK(LHMAX)
IF (HMAX .LE. 0.0D0) GO TO 710
ENDIF
C
C Initialize counters and other flags.
C
IWORK(LNST)=0
IWORK(LNRE)=0
IWORK(LNJE)=0
IWORK(LETF)=0
IWORK(LNCFN)=0
IWORK(LNNI)=0
IWORK(LNLI)=0
IWORK(LNPS)=0
IWORK(LNCFL)=0
IWORK(LNRTE)=0
IWORK(LKPRIN)=INFO(18)
IDID=1
GO TO 200
C
C-----------------------------------------------------------------------
C This block is for continuation calls only.
C Here we check INFO(1), and if the last step was interrupted,
C we check whether appropriate action was taken.
C-----------------------------------------------------------------------
C
100 CONTINUE
IF(INFO(1).EQ.1)GO TO 110
ITEMP = 1
IF(INFO(1).NE.-1)GO TO 701
C
C If we are here, the last step was interrupted by an error
C condition from DDSTP, and appropriate action was not taken.
C This is a fatal error.
C
MSG = 'DASKR-- THE LAST STEP TERMINATED WITH A NEGATIVE'
CALL XERRWD(MSG,49,201,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- VALUE (=I1) OF IDID AND NO APPROPRIATE'
CALL XERRWD(MSG,47,202,0,1,IDID,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- ACTION WAS TAKEN. RUN TERMINATED'
CALL XERRWD(MSG,41,203,1,0,0,0,0,0.0D0,0.0D0)
RETURN
110 CONTINUE
C
C-----------------------------------------------------------------------
C This block is executed on all calls.
C
C Counters are saved for later checks of performance.
C Then the error tolerance parameters are checked, and the
C work array pointers are set.
C-----------------------------------------------------------------------
C
200 CONTINUE
C
C Save counters for use later.
C
IWORK(LNSTL)=IWORK(LNST)
NLI0 = IWORK(LNLI)
NNI0 = IWORK(LNNI)
NCFN0 = IWORK(LNCFN)
NCFL0 = IWORK(LNCFL)
NWARN = 0
C
C Check RTOL and ATOL.
C
NZFLG = 0
RTOLI = RTOL(1)
ATOLI = ATOL(1)
DO 210 I=1,NEQ
IF (INFO(2) .EQ. 1) RTOLI = RTOL(I)
IF (INFO(2) .EQ. 1) ATOLI = ATOL(I)
IF (RTOLI .GT. 0.0D0 .OR. ATOLI .GT. 0.0D0) NZFLG = 1
IF (RTOLI .LT. 0.0D0) GO TO 706
IF (ATOLI .LT. 0.0D0) GO TO 707
210 CONTINUE
IF (NZFLG .EQ. 0) GO TO 708
C
C Set pointers to RWORK and IWORK segments.
C For direct methods, SAVR is not used.
C
IWORK(LLCIWP) = LID + LENID
LSAVR = LDELTA
IF (INFO(12) .NE. 0) LSAVR = LDELTA + NEQ
LE = LSAVR + NEQ
LWT = LE + NEQ
LVT = LWT
IF (INFO(16) .NE. 0) LVT = LWT + NEQ
LPHI = LVT + NEQ
LR0 = LPHI + NCPHI*NEQ
LR1 = LR0 + NRT
LRX = LR1 + NRT
LWM = LRX + NRT
c LXX = LWM+taille defined in cossimdaskr for Jacobian
IF (INFO(1) .EQ. 1) GO TO 400
C
C-----------------------------------------------------------------------
C This block is executed on the initial call only.
C Set the initial step size, the error weight vector, and PHI.
C Compute unknown initial components of Y and YPRIME, if requested.
C-----------------------------------------------------------------------
C
300 CONTINUE
TN=T
IDID=1
C
C Set error weight array WT and altered weight array VT.
C
CALL DDAWTS1(NEQ,INFO(2),RTOL,ATOL,Y,RWORK(LWT),RPAR,IPAR)
CALL DINVWT(NEQ,RWORK(LWT),IER)
IF (IER .NE. 0) GO TO 713
IF (INFO(16) .NE. 0) THEN
DO 305 I = 1, NEQ
305 RWORK(LVT+I-1) = MAX(IWORK(LID+I-1),0)*RWORK(LWT+I-1)
ENDIF
C
C Compute unit roundoff and HMIN. >>> instead of D1MACH(4) we use
c DLAMCH, because the optimized compiler affects the D1MACH.
c UROUND = D1MACH(4)
UROUND = DLAMCH('p')
RWORK(LROUND) = UROUND
c ---------------- Hmind chnage ---------------------
c HMIN = 4.0D0*UROUND*MAX(ABS(T),ABS(TOUT))
HMIN = 0.0
c ---------------- Hmind chnage ---------------------
C
C Set/check STPTOL control for initial condition calculation.
C
IF (INFO(11) .NE. 0) THEN
IF( INFO(17) .EQ. 0) THEN
RWORK(LSTOL) = UROUND**.6667D0
ELSE
IF (RWORK(LSTOL) .LE. 0.0D0) GO TO 725
ENDIF
ENDIF
C
C Compute EPCON and square root of NEQ and its reciprocal, used
C inside iterative solver.
C
RWORK(LEPCON) = 0.33D0
FLOATN = NEQ
RWORK(LSQRN) = SQRT(FLOATN)
RWORK(LRSQRN) = 1.D0/RWORK(LSQRN)
C
C Check initial interval to see that it is long enough.
C
TDIST = ABS(TOUT - T)
c ---------------- Hmind chnage ---------------------
cc IF(TDIST .LT. HMIN) GO TO 714
c ---------------- Hmind chnage ---------------------
C
C Check H0, if this was input.
C
IF (INFO(8) .EQ. 0) GO TO 310
H0 = RWORK(LH)
IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 711
IF (H0 .EQ. 0.0D0) GO TO 712
GO TO 320
310 CONTINUE
C
C Compute initial stepsize, to be used by either
C DDSTP or DDASIC, depending on INFO(11).
C
H0 = 0.001D0*TDIST
YPNORM = DDWNRM(NEQ,YPRIME,RWORK(LVT),RPAR,IPAR)
IF (YPNORM .GT. 0.5D0/H0) H0 = 0.5D0/YPNORM
H0 = SIGN(H0,TOUT-T)
C
C Adjust H0 if necessary to meet HMAX bound.
C
320 IF (INFO(7) .EQ. 0) GO TO 330
RH = ABS(H0)/RWORK(LHMAX)
IF (RH .GT. 1.0D0) H0 = H0/RH
C
C Check against TSTOP, if applicable.
C
330 IF (INFO(4) .EQ. 0) GO TO 340
TSTOP = RWORK(LTSTOP)
IF ((TSTOP - T)*H0 .LT. 0.0D0) GO TO 715
IF ((T + H0 - TSTOP)*H0 .GT. 0.0D0) H0 = TSTOP - T
IF ((TSTOP - TOUT)*H0 .LT. 0.0D0) GO TO 709
C
340 IF (INFO(11) .EQ. 0) GO TO 370
C
C Compute unknown components of initial Y and YPRIME, depending
C on INFO(11) and INFO(12). INFO(12) represents the nonlinear
C solver type (direct/Krylov). Pass the name of the specific
C nonlinear solver, depending on INFO(12). The location of the work
C arrays SAVR, YIC, YPIC, PWK also differ in the two cases.
C For use in stopping tests, pass TSCALE = TDIST if INDEX = 0.
C
NWT = 1
EPCONI = RWORK(LEPIN)*RWORK(LEPCON)
TSCALE = 0.0D0
IF (INDEX .EQ. 0) TSCALE = TDIST
350 IF (INFO(12) .EQ. 0) THEN
LYIC = LPHI + 2*NEQ
LYPIC = LYIC + NEQ
LPWK = LYPIC
CALL DDASIC(TN,Y,YPRIME,NEQ,INFO(11),IWORK(LID),
* RES,JAC,PSOL,H0,TSCALE,RWORK(LWT),NWT,IDID,RPAR,IPAR,
* RWORK(LPHI),RWORK(LSAVR),RWORK(LDELTA),RWORK(LE),
* RWORK(LYIC),RWORK(LYPIC),RWORK(LPWK),RWORK(LWM),IWORK(LIWM),
* RWORK(LROUND),RWORK(LEPLI),RWORK(LSQRN),RWORK(LRSQRN),
* EPCONI,RWORK(LSTOL),INFO(15),ICNFLG,IWORK(LICNS),DDASID)
ELSE IF (INFO(12) .EQ. 1) THEN
LYIC = LWM
LYPIC = LYIC + NEQ
LPWK = LYPIC + NEQ
CALL DDASIC(TN,Y,YPRIME,NEQ,INFO(11),IWORK(LID),
* RES,JAC,PSOL,H0,TSCALE,RWORK(LWT),NWT,IDID,RPAR,IPAR,
* RWORK(LPHI),RWORK(LSAVR),RWORK(LDELTA),RWORK(LE),
* RWORK(LYIC),RWORK(LYPIC),RWORK(LPWK),RWORK(LWM),IWORK(LIWM),
* RWORK(LROUND),RWORK(LEPLI),RWORK(LSQRN),RWORK(LRSQRN),
* EPCONI,RWORK(LSTOL),INFO(15),ICNFLG,IWORK(LICNS),DDASIK)
ENDIF
C
IF (IDID .LT. 0) GO TO 600
C
C DDASIC was successful. If this was the first call to DDASIC,
C update the WT array (with the current Y) and call it again.
C
IF (NWT .EQ. 2) GO TO 355
NWT = 2
CALL DDAWTS1(NEQ,INFO(2),RTOL,ATOL,Y,RWORK(LWT),RPAR,IPAR)
CALL DINVWT(NEQ,RWORK(LWT),IER)
IF (IER .NE. 0) GO TO 713
GO TO 350
C
C If INFO(14) = 1, return now with IDID = 4.
C
355 IF (INFO(14) .EQ. 1) THEN
IDID = 4
H = H0
IF (INFO(11) .EQ. 1) RWORK(LHOLD) = H0
GO TO 590
ENDIF
C
C Update the WT and VT arrays one more time, with the new Y.
C
CALL DDAWTS1(NEQ,INFO(2),RTOL,ATOL,Y,RWORK(LWT),RPAR,IPAR)
CALL DINVWT(NEQ,RWORK(LWT),IER)
IF (IER .NE. 0) GO TO 713
IF (INFO(16) .NE. 0) THEN
DO 357 I = 1, NEQ
357 RWORK(LVT+I-1) = MAX(IWORK(LID+I-1),0)*RWORK(LWT+I-1)
ENDIF
C
C Reset the initial stepsize to be used by DDSTP.
C Use H0, if this was input. Otherwise, recompute H0,
C and adjust it if necessary to meet HMAX bound.
C
IF (INFO(8) .NE. 0) THEN
H0 = RWORK(LH)
GO TO 360
ENDIF
C
H0 = 0.001D0*TDIST
YPNORM = DDWNRM(NEQ,YPRIME,RWORK(LVT),RPAR,IPAR)
IF (YPNORM .GT. 0.5D0/H0) H0 = 0.5D0/YPNORM
H0 = SIGN(H0,TOUT-T)
C
360 IF (INFO(7) .NE. 0) THEN
RH = ABS(H0)/RWORK(LHMAX)
IF (RH .GT. 1.0D0) H0 = H0/RH
ENDIF
C
C Check against TSTOP, if applicable.
C
IF (INFO(4) .NE. 0) THEN
TSTOP = RWORK(LTSTOP)
IF ((T + H0 - TSTOP)*H0 .GT. 0.0D0) H0 = TSTOP - T
ENDIF
C
C Load H and RWORK(LH) with H0.
C
370 H = H0
RWORK(LH) = H
C
C Load Y and H*YPRIME into PHI(*,1) and PHI(*,2).
C
ITEMP = LPHI + NEQ
DO 380 I = 1,NEQ
RWORK(LPHI + I - 1) = Y(I)
380 RWORK(ITEMP + I - 1) = H*YPRIME(I)
C
C Initialize T0 in RWORK; check for a zero of R near initial T.
C
RWORK(LT0) = T
IWORK(LIRFND) = 0
RWORK(LPSI)=H
RWORK(LPSI+1)=2.0D0*H
IWORK(LKOLD)=1
IF (NRT .EQ. 0) GO TO 390
c -------------- masking ----------------->>>
CALL DRCHEK2(1,RT,NRT,NEQ,T,TOUT,Y,YPRIME,RWORK(LPHI),
* RWORK(LPSI),IWORK(LKOLD),RWORK(LR0),RWORK(LR1),
* RWORK(LRX),JROOT,IRT,RWORK(LROUND),INFO(3),
* RWORK,IWORK,RPAR,IPAR)
IF (IRT .LT. 0) GO TO 731
390 GO TO 500
C
C-----------------------------------------------------------------------
C This block is for continuation calls only.
C Its purpose is to check stop conditions before taking a step.
C Adjust H if necessary to meet HMAX bound.
C-----------------------------------------------------------------------
C
400 CONTINUE
UROUND=RWORK(LROUND)
DONE = .FALSE.
TN=RWORK(LTN)
H=RWORK(LH)
IF(NRT .EQ. 0) GO TO 405
C
C Check for a zero of R near TN.
C
CALL DRCHEK2(2,RT,NRT,NEQ,TN,TOUT,Y,YPRIME,RWORK(LPHI),
* RWORK(LPSI),IWORK(LKOLD),RWORK(LR0),RWORK(LR1),
* RWORK(LRX),JROOT,IRT,RWORK(LROUND),INFO(3),
* RWORK,IWORK,RPAR,IPAR)
IF (IRT .LT. 0) GO TO 731
IF (IRT .EQ. 1) THEN
IWORK(LIRFND) = 1
IDID = 5
T = RWORK(LT0)
DONE = .TRUE.
GO TO 490
ENDIF
405 CONTINUE
C
IF(INFO(7) .EQ. 0) GO TO 410
RH = ABS(H)/RWORK(LHMAX)
IF(RH .GT. 1.0D0) H = H/RH
410 CONTINUE
IF(T .EQ. TOUT) GO TO 719
IF((T - TOUT)*H .GT. 0.0D0) GO TO 711
IF(INFO(4) .EQ. 1) GO TO 430
IF(INFO(3) .EQ. 1) GO TO 420
IF((TN-TOUT)*H.LT.0.0D0)GO TO 490
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T=TOUT
IDID = 3
DONE = .TRUE.
GO TO 490
420 IF((TN-T)*H .LE. 0.0D0) GO TO 490
IF((TN - TOUT)*H .GE. 0.0D0) GO TO 425
CALL DDATRP1(TN,TN,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T = TN
IDID = 1
DONE = .TRUE.
GO TO 490
425 CONTINUE
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T = TOUT
IDID = 3
DONE = .TRUE.
GO TO 490
430 IF(INFO(3) .EQ. 1) GO TO 440
TSTOP=RWORK(LTSTOP)
IF((TN-TSTOP)*H.GT.0.0D0) GO TO 715
IF((TSTOP-TOUT)*H.LT.0.0D0)GO TO 709
IF((TN-TOUT)*H.LT.0.0D0)GO TO 450
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T=TOUT
IDID = 3
DONE = .TRUE.
GO TO 490
440 TSTOP = RWORK(LTSTOP)
IF((TN-TSTOP)*H .GT. 0.0D0) GO TO 715
IF((TSTOP-TOUT)*H .LT. 0.0D0) GO TO 709
IF((TN-T)*H .LE. 0.0D0) GO TO 450
IF((TN - TOUT)*H .GE. 0.0D0) GO TO 445
CALL DDATRP1(TN,TN,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T = TN
IDID = 1
DONE = .TRUE.
GO TO 490
445 CONTINUE
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
T = TOUT
IDID = 3
DONE = .TRUE.
GO TO 490
450 CONTINUE
C
C Check whether we are within roundoff of TSTOP.
C
IF(ABS(TN-TSTOP).GT.100.0D0*UROUND*
* (ABS(TN)+ABS(H)))GO TO 460
CALL DDATRP1(TN,TSTOP,Y,YPRIME,NEQ,IWORK(LKOLD),
* RWORK(LPHI),RWORK(LPSI))
IDID=2
T=TSTOP
DONE = .TRUE.
GO TO 490
460 TNEXT=TN+H
IF((TNEXT-TSTOP)*H.LE.0.0D0)GO TO 490
H=TSTOP-TN
RWORK(LH)=H
C
490 IF (DONE) GO TO 590
C
C-----------------------------------------------------------------------
C The next block contains the call to the one-step integrator DDSTP.
C This is a looping point for the integration steps.
C Check for too many steps.
C Check for poor Newton/Krylov performance.
C Update WT. Check for too much accuracy requested.
C Compute minimum stepsize.
C-----------------------------------------------------------------------
C
500 CONTINUE
C
C Check for too many steps.
C
IF((IWORK(LNST)-IWORK(LNSTL)).LT.500) GO TO 505
IDID=-1
GO TO 527
C
C Check for poor Newton/Krylov performance.
C
505 IF (INFO(12) .EQ. 0) GO TO 510
NSTD = IWORK(LNST) - IWORK(LNSTL)
NNID = IWORK(LNNI) - NNI0
IF (NSTD .LT. 10 .OR. NNID .EQ. 0) GO TO 510
AVLIN = REAL(IWORK(LNLI) - NLI0)/REAL(NNID)
RCFN = REAL(IWORK(LNCFN) - NCFN0)/REAL(NSTD)
RCFL = REAL(IWORK(LNCFL) - NCFL0)/REAL(NNID)
FMAXL = IWORK(LMAXL)
LAVL = AVLIN .GT. FMAXL
LCFN = RCFN .GT. 0.9D0
LCFL = RCFL .GT. 0.9D0
LWARN = LAVL .OR. LCFN .OR. LCFL
IF (.NOT.LWARN) GO TO 510
NWARN = NWARN + 1
IF (NWARN .GT. 10) GO TO 510
IF (LAVL) THEN
MSG = 'DASKR-- Warning. Poor iterative algorithm performance '
CALL XERRWD (MSG, 56, 501, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
MSG = ' at T = R1. Average no. of linear iterations = R2 '
CALL XERRWD (MSG, 56, 501, 0, 0, 0, 0, 2, TN, AVLIN)
ENDIF
IF (LCFN) THEN
MSG = 'DASKR-- Warning. Poor iterative algorithm performance '
CALL XERRWD (MSG, 56, 502, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
MSG = ' at T = R1. Nonlinear convergence failure rate = R2'
CALL XERRWD (MSG, 56, 502, 0, 0, 0, 0, 2, TN, RCFN)
ENDIF
IF (LCFL) THEN
MSG = 'DASKR-- Warning. Poor iterative algorithm performance '
CALL XERRWD (MSG, 56, 503, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
MSG = ' at T = R1. Linear convergence failure rate = R2 '
CALL XERRWD (MSG, 56, 503, 0, 0, 0, 0, 2, TN, RCFL)
ENDIF
C
C Update WT and VT, if this is not the first call.
C
510 CALL DDAWTS1(NEQ,INFO(2),RTOL,ATOL,RWORK(LPHI),RWORK(LWT),
* RPAR,IPAR)
CALL DINVWT(NEQ,RWORK(LWT),IER)
IF (IER .NE. 0) THEN
IDID = -3
GO TO 527
ENDIF
IF (INFO(16) .NE. 0) THEN
DO 515 I = 1, NEQ
RWORK(LVT+I-1) = MAX(IWORK(LID+I-1),0)*RWORK(LWT+I-1)
515 CONTINUE
ENDIF
C
C Test for too much accuracy requested.
C
R = DDWNRM(NEQ,RWORK(LPHI),RWORK(LWT),RPAR,IPAR)*100.0D0*UROUND
IF (R .LE. 1.0D0) GO TO 525
C
C Multiply RTOL and ATOL by R and return.
C
IF(INFO(2).EQ.1)GO TO 523
RTOL(1)=R*RTOL(1)
ATOL(1)=R*ATOL(1)
IDID=-2
GO TO 527
523 DO 524 I=1,NEQ
RTOL(I)=R*RTOL(I)
ATOL(I)=R*ATOL(I)
524 CONTINUE
IDID=-2
GO TO 527
525 CONTINUE
C
C Compute minimum stepsize.
C
c ----------------------- Hmin Change----------------------
c
c HMIN is intended to be a value slightly above the roundoff level
c in the current T. As such it is appropriate that it varies with
c T. In DASKR, HMIN is used in two ways:
c
c 1. At the start, ABS(TOUT - T) is required to be at least HMIN, to
c guarantee that the user has provided the direction of the
c integration reliably. For this test, it would be sufficient to
c ignore HMIN and simply require that TOUT - T is nonzero on the
c machine.
c
c 2. If the integration has difficulty passing the convergence or
c the error test with step size H of size ABS(H) = HMIN, it stops
c with an error message saying that. In all of these uses, it would
c not hurt to use HMIN = 0, in my opinion. There are cases where
c the appropriate step size is temporarily below the roundoff level
c in T. The only negative impact of using HMIN = 0 then is that
c some steps may be taken in which T + H = T on the machine. In
c contrast to the DASSL family, the ODEPACK solvers have HMIN = 0 as
c the default in these uses of HMIN, but they issue a warning when T
c + H = T, because in most cases this is the result of a user
c program bug or input error of some kind. On the other hand, the
c value HMIN = 4*UROUND makes no sense, because it ignores the scale
c of the T variable completely. Thus it could ause invalid error
c halts, when values of ABS(H) smaller than that may well be
c appropriate. If the current HMIN is bothersome, I suggest using
c HMIN = 0, and removing HMIN from the initial test on TOUT - T
c
c
c HMIN=4.0D0*UROUND*MAX(ABS(TN),ABS(TOUT))
HMIN=0.0
c ----------------------- Hmin Change----------------------
C Test H vs. HMAX
IF (INFO(7) .NE. 0) THEN
RH = ABS(H)/RWORK(LHMAX)
IF (RH .GT. 1.0D0) H = H/RH
ENDIF
C
C Call the one-step integrator.
C Note that INFO(12) represents the nonlinear solver type.
C Pass the required nonlinear solver, depending upon INFO(12).
C
c info(12): 0-> dierct case 1->Krylov
IF (INFO(12) .EQ. 0) THEN
CALL DDSTP(TN,Y,YPRIME,NEQ,
* RES,JAC,PSOL,H,RWORK(LWT),RWORK(LVT),INFO(1),IDID,RPAR,IPAR,
* RWORK(LPHI),RWORK(LSAVR),RWORK(LDELTA),RWORK(LE),
* RWORK(LWM),IWORK(LIWM),
* RWORK(LALPHA),RWORK(LBETA),RWORK(LGAMMA),
* RWORK(LPSI),RWORK(LSIGMA),
* RWORK(LCJ),RWORK(LCJOLD),RWORK(LHOLD),RWORK(LS),HMIN,
* RWORK(LROUND), RWORK(LEPLI),RWORK(LSQRN),RWORK(LRSQRN),
* RWORK(LEPCON), IWORK(LPHASE),IWORK(LJCALC),INFO(15),
* IWORK(LK), IWORK(LKOLD),IWORK(LNS),NONNEG,INFO(12),
* DNEDD)
ELSE IF (INFO(12) .EQ. 1) THEN
CALL DDSTP(TN,Y,YPRIME,NEQ,
* RES,JAC,PSOL,H,RWORK(LWT),RWORK(LVT),INFO(1),IDID,RPAR,IPAR,
* RWORK(LPHI),RWORK(LSAVR),RWORK(LDELTA),RWORK(LE),
* RWORK(LWM),IWORK(LIWM),
* RWORK(LALPHA),RWORK(LBETA),RWORK(LGAMMA),
* RWORK(LPSI),RWORK(LSIGMA),
* RWORK(LCJ),RWORK(LCJOLD),RWORK(LHOLD),RWORK(LS),HMIN,
* RWORK(LROUND), RWORK(LEPLI),RWORK(LSQRN),RWORK(LRSQRN),
* RWORK(LEPCON), IWORK(LPHASE),IWORK(LJCALC),INFO(15),
* IWORK(LK), IWORK(LKOLD),IWORK(LNS),NONNEG,INFO(12),
* DNEDK)
ENDIF
C
527 IF(IDID.LT.0)GO TO 600
C
C-----------------------------------------------------------------------
C This block handles the case of a successful return from DDSTP
C (IDID=1). Test for stop conditions.
C-----------------------------------------------------------------------
C
IF(NRT .EQ. 0) GO TO 529
C
C Check for a zero of R near TN.
C
CALL DRCHEK2(3,RT,NRT,NEQ,TN,TOUT,Y,YPRIME,RWORK(LPHI),
* RWORK(LPSI),IWORK(LKOLD),RWORK(LR0),RWORK(LR1),
* RWORK(LRX),JROOT,IRT,RWORK(LROUND),INFO(3),
* RWORK,IWORK,RPAR,IPAR)
C >>>>
IF(IRT .EQ. 2) THEN
IWORK(LIRFND) = 2
IDID = 6
T = RWORK(LT0)
GO TO 580
ENDIF
C <<<<<
IF(IRT .NE. 1) GO TO 529
IWORK(LIRFND) = 1
IDID = 5
T = RWORK(LT0)
GO TO 580
529 CONTINUE
IF(INFO(4).NE.0)GO TO 540
IF(INFO(3).NE.0)GO TO 530
IF((TN-TOUT)*H.LT.0.0D0)GO TO 500
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
IDID=3
T=TOUT
GO TO 580
530 IF((TN-TOUT)*H.GE.0.0D0)GO TO 535
T=TN
IDID=1
GO TO 580
535 CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
IDID=3
T=TOUT
GO TO 580
540 IF(INFO(3).NE.0)GO TO 550
IF((TN-TOUT)*H.LT.0.0D0)GO TO 542
CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
T=TOUT
IDID=3
GO TO 580
542 IF(ABS(TN-TSTOP).LE.100.0D0*UROUND*
* (ABS(TN)+ABS(H)))GO TO 545
TNEXT=TN+H
IF((TNEXT-TSTOP)*H.LE.0.0D0)GO TO 500
H=TSTOP-TN
GO TO 500
545 CALL DDATRP1(TN,TSTOP,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
IDID=2
T=TSTOP
GO TO 580
550 IF((TN-TOUT)*H.GE.0.0D0)GO TO 555
IF(ABS(TN-TSTOP).LE.100.0D0*UROUND*(ABS(TN)+ABS(H)))GO TO 552
T=TN
IDID=1
GO TO 580
552 CALL DDATRP1(TN,TSTOP,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
IDID=2
T=TSTOP
GO TO 580
555 CALL DDATRP1(TN,TOUT,Y,YPRIME,NEQ,
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI))
T=TOUT
IDID=3
580 CONTINUE
C
C-----------------------------------------------------------------------
C All successful returns from DDASKR are made from this block.
C-----------------------------------------------------------------------
C
590 CONTINUE
RWORK(LTN)=TN
RWORK(LTLAST)=T
RWORK(LH)=H
RETURN
C
C-----------------------------------------------------------------------
C This block handles all unsuccessful returns other than for
C illegal input.
C-----------------------------------------------------------------------
C
600 CONTINUE
ITEMP = -IDID
GO TO (610,620,630,700,655,640,650,660,670,675,
* 680,685,690,695,696), ITEMP
C
C The maximum number of steps was taken before
C reaching tout.
C
610 MSG = 'DASKR-- AT CURRENT T (=R1) 500 STEPS'
CALL XERRWD(MSG,38,610,0,0,0,0,1,TN,0.0D0)
MSG = 'DASKR-- TAKEN ON THIS CALL BEFORE REACHING TOUT'
CALL XERRWD(MSG,48,611,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Too much accuracy for machine precision.
C
620 MSG = 'DASKR-- AT T (=R1) TOO MUCH ACCURACY REQUESTED'
CALL XERRWD(MSG,47,620,0,0,0,0,1,TN,0.0D0)
MSG = 'DASKR-- FOR PRECISION OF MACHINE. RTOL AND ATOL'
CALL XERRWD(MSG,48,621,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- WERE INCREASED BY A FACTOR R (=R1)'
CALL XERRWD(MSG,43,622,0,0,0,0,1,R,0.0D0)
GO TO 700
C
C WT(I) .LE. 0.0D0 for some I (not at start of problem).
C
630 MSG = 'DASKR-- AT T (=R1) SOME ELEMENT OF WT'
CALL XERRWD(MSG,38,630,0,0,0,0,1,TN,0.0D0)
MSG = 'DASKR-- HAS BECOME .LE. 0.0'
CALL XERRWD(MSG,28,631,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Error test failed repeatedly or with H=HMIN.
C
640 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,640,0,0,0,0,2,TN,H)
MSG='DASKR-- ERROR TEST FAILED REPEATEDLY OR WITH ABS(H)=HMIN'
CALL XERRWD(MSG,57,641,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Nonlinear solver failed to converge repeatedly or with H=HMIN.
C
650 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,650,0,0,0,0,2,TN,H)
MSG = 'DASKR-- NONLINEAR SOLVER FAILED TO CONVERGE'
CALL XERRWD(MSG,44,651,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- REPEATEDLY OR WITH ABS(H)=HMIN'
CALL XERRWD(MSG,40,652,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C The preconditioner had repeated failures.
C
655 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,655,0,0,0,0,2,TN,H)
MSG = 'DASKR-- PRECONDITIONER HAD REPEATED FAILURES.'
CALL XERRWD(MSG,46,656,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C The iteration matrix is singular.
C
660 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,660,0,0,0,0,2,TN,H)
MSG = 'DASKR-- ITERATION MATRIX IS SINGULAR.'
CALL XERRWD(MSG,38,661,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Nonlinear system failure preceded by error test failures.
C
670 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,670,0,0,0,0,2,TN,H)
MSG = 'DASKR-- NONLINEAR SOLVER COULD NOT CONVERGE.'
CALL XERRWD(MSG,45,671,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- ALSO, THE ERROR TEST FAILED REPEATEDLY.'
CALL XERRWD(MSG,49,672,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Nonlinear system failure because IRES = -1.
C
675 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,675,0,0,0,0,2,TN,H)
MSG = 'DASKR-- NONLINEAR SYSTEM SOLVER COULD NOT CONVERGE'
CALL XERRWD(MSG,51,676,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- BECAUSE IRES WAS EQUAL TO MINUS ONE'
CALL XERRWD(MSG,44,677,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Failure because IRES = -2.
C
680 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2)'
CALL XERRWD(MSG,40,680,0,0,0,0,2,TN,H)
MSG = 'DASKR-- IRES WAS EQUAL TO MINUS TWO'
CALL XERRWD(MSG,36,681,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Failed to compute initial YPRIME.
C
685 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,685,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- INITIAL (Y,YPRIME) COULD NOT BE COMPUTED'
CALL XERRWD(MSG,49,686,0,0,0,0,2,TN,H0)
GO TO 700
C
C Failure because IER was negative from PSOL.
C
690 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2)'
CALL XERRWD(MSG,40,690,0,0,0,0,2,TN,H)
MSG = 'DASKR-- IER WAS NEGATIVE FROM PSOL'
CALL XERRWD(MSG,35,691,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
C Failure because the linear system solver could not converge.
C
695 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,695,0,0,0,0,2,TN,H)
MSG = 'DASKR-- LINEAR SYSTEM SOLVER COULD NOT CONVERGE.'
CALL XERRWD(MSG,50,696,0,0,0,0,0,0.0D0,0.0D0)
GO TO 700
C
696 MSG = 'DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE'
CALL XERRWD(MSG,44,685,0,0,0,0,0,0.0D0,0.0D0)
MSG = 'DASKR-- INITIAL Jacobian COULD NOT BE COMPUTED'
CALL XERRWD(MSG,49,686,0,0,0,0,2,TN,H0)
GO TO 700
C
C
700 CONTINUE
INFO(1)=-1
T=TN
RWORK(LTN)=TN
RWORK(LH)=H
RETURN
C
C-----------------------------------------------------------------------
C This block handles all error returns due to illegal input,
C as detected before calling DDSTP.
C First the error message routine is called. If this happens
C twice in succession, execution is terminated.
C-----------------------------------------------------------------------
C
701 MSG = 'DASKR-- ELEMENT (=I1) OF INFO VECTOR IS NOT VALID'
CALL XERRWD(MSG,50,1,0,1,ITEMP,0,0,0.0D0,0.0D0)
GO TO 750
702 MSG = 'DASKR-- NEQ (=I1) .LE. 0'
CALL XERRWD(MSG,25,2,0,1,NEQ,0,0,0.0D0,0.0D0)
GO TO 750
703 MSG = 'DASKR-- MAXORD (=I1) NOT IN RANGE'
CALL XERRWD(MSG,34,3,0,1,MXORD,0,0,0.0D0,0.0D0)
GO TO 750
704 MSG='DASKR-- RWORK LENGTH NEEDED, LENRW (=I1), EXCEEDS LRW (=I2)'
CALL XERRWD(MSG,60,4,0,2,LENRW,LRW,0,0.0D0,0.0D0)
GO TO 750
705 MSG='DASKR-- IWORK LENGTH NEEDED, LENIW (=I1), EXCEEDS LIW (=I2)'
CALL XERRWD(MSG,60,5,0,2,LENIW,LIW,0,0.0D0,0.0D0)
GO TO 750
706 MSG = 'DASKR-- SOME ELEMENT OF RTOL IS .LT. 0'
CALL XERRWD(MSG,39,6,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
707 MSG = 'DASKR-- SOME ELEMENT OF ATOL IS .LT. 0'
CALL XERRWD(MSG,39,7,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
708 MSG = 'DASKR-- ALL ELEMENTS OF RTOL AND ATOL ARE ZERO'
CALL XERRWD(MSG,47,8,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
709 MSG='DASKR-- INFO(4) = 1 AND TSTOP (=R1) BEHIND TOUT (=R2)'
CALL XERRWD(MSG,54,9,0,0,0,0,2,TSTOP,TOUT)
GO TO 750
710 MSG = 'DASKR-- HMAX (=R1) .LT. 0.0'
CALL XERRWD(MSG,28,10,0,0,0,0,1,HMAX,0.0D0)
GO TO 750
711 MSG = 'DASKR-- TOUT (=R1) BEHIND T (=R2)'
CALL XERRWD(MSG,34,11,0,0,0,0,2,TOUT,T)
GO TO 750
712 MSG = 'DASKR-- INFO(8)=1 AND H0=0.0'
CALL XERRWD(MSG,29,12,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
713 MSG = 'DASKR-- SOME ELEMENT OF WT IS .LE. 0.0'
CALL XERRWD(MSG,39,13,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
714 MSG='DASKR-- TOUT (=R1) TOO CLOSE TO T (=R2) TO START INTEGRATION'
CALL XERRWD(MSG,60,14,0,0,0,0,2,TOUT,T)
GO TO 750
715 MSG = 'DASKR-- INFO(4)=1 AND TSTOP (=R1) BEHIND T (=R2)'
CALL XERRWD(MSG,49,15,0,0,0,0,2,TSTOP,T)
GO TO 750
717 MSG = 'DASKR-- ML (=I1) ILLEGAL. EITHER .LT. 0 OR .GT. NEQ'
CALL XERRWD(MSG,52,17,0,1,IWORK(LML),0,0,0.0D0,0.0D0)
GO TO 750
718 MSG = 'DASKR-- MU (=I1) ILLEGAL. EITHER .LT. 0 OR .GT. NEQ'
CALL XERRWD(MSG,52,18,0,1,IWORK(LMU),0,0,0.0D0,0.0D0)
GO TO 750
719 MSG = 'DASKR-- TOUT (=R1) IS EQUAL TO T (=R2)'
CALL XERRWD(MSG,39,19,0,0,0,0,2,TOUT,T)
GO TO 750
720 MSG = 'DASKR-- MAXL (=I1) ILLEGAL. EITHER .LT. 1 OR .GT. NEQ'
CALL XERRWD(MSG,54,20,0,1,IWORK(LMAXL),0,0,0.0D0,0.0D0)
GO TO 750
721 MSG = 'DASKR-- KMP (=I1) ILLEGAL. EITHER .LT. 1 OR .GT. MAXL'
CALL XERRWD(MSG,54,21,0,1,IWORK(LKMP),0,0,0.0D0,0.0D0)
GO TO 750
722 MSG = 'DASKR-- NRMAX (=I1) ILLEGAL. .LT. 0'
CALL XERRWD(MSG,36,22,0,1,IWORK(LNRMAX),0,0,0.0D0,0.0D0)
GO TO 750
723 MSG = 'DASKR-- EPLI (=R1) ILLEGAL. EITHER .LE. 0.D0 OR .GE. 1.D0'
CALL XERRWD(MSG,58,23,0,0,0,0,1,RWORK(LEPLI),0.0D0)
GO TO 750
724 MSG = 'DASKR-- ILLEGAL IWORK VALUE FOR INFO(11) .NE. 0'
CALL XERRWD(MSG,48,24,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
725 MSG = 'DASKR-- ONE OF THE INPUTS FOR INFO(17) = 1 IS ILLEGAL'
CALL XERRWD(MSG,54,25,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
726 MSG = 'DASKR-- ILLEGAL IWORK VALUE FOR INFO(10) .NE. 0'
CALL XERRWD(MSG,48,26,0,0,0,0,0,0.0D0,0.0D0)
GO TO 750
727 MSG = 'DASKR-- Y(I) AND IWORK(40+I) (I=I1) INCONSISTENT'
CALL XERRWD(MSG,49,27,0,1,IRET,0,0,0.0D0,0.0D0)
GO TO 750
730 MSG = 'DASKR-- NRT (=I1) .LT. 0'
CALL XERRWD(MSG,25,30,1,1,NRT,0,0,0.0D0,0.0D0)
GO TO 750
731 MSG = 'DASKR-- R IS ILL-DEFINED. ZERO VALUES WERE FOUND AT TWO'
CALL XERRWD(MSG,57,31,1,0,0,0,0,0.0D0,0.0D0)
MSG = ' VERY CLOSE T VALUES, AT T = R1'
CALL XERRWD(MSG,39,31,1,0,0,0,1,RWORK(LT0),0.0D0)
C
750 IF(INFO(1).EQ.-1) GO TO 760
INFO(1)=-1
IDID=-33
RETURN
760 MSG = 'DASKR-- REPEATED OCCURRENCES OF ILLEGAL INPUT'
CALL XERRWD(MSG,46,701,0,0,0,0,0,0.0D0,0.0D0)
770 MSG = 'DASKR-- RUN TERMINATED. APPARENT INFINITE LOOP'
CALL XERRWD(MSG,47,702,1,0,0,0,0,0.0D0,0.0D0)
RETURN
C
C------END OF SUBROUTINE DDASKR-----------------------------------------
END
c ================================================================
SUBROUTINE DRCHEK2 (JOB, RT, NRT, NEQ, TN, TOUT, Y, YP, PHI, PSI,
* KOLD, R0, R1, RX, JROOT, IRT, UROUND, INFO3, RWORK, IWORK,
* RPAR, IPAR)
C
C*** BEGIN PROLOGUE DRCHEK
C*** REFER TO DDASKR
C*** ROUTINES CALLED DDATRP, DROOTS, DCOPY, RT
C*** REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added test for roots close when JOB = 2.
C*** END PROLOGUE DRCHEK
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C Pointers into IWORK:
PARAMETER (LNRTE=36, LIRFND=37)
C Pointers into RWORK:
PARAMETER (LT0=51, LTLAST=52)
EXTERNAL RT
INTEGER JOB, NRT, NEQ, KOLD, JROOT, IRT, INFO3, IWORK, IPAR
DOUBLE PRECISION TN, TOUT, Y, YP, PHI, PSI, R0, R1, RX, UROUND,
* RWORK, RPAR
DIMENSION Y(*), YP(*), PHI(NEQ,*), PSI(*),
* R0(*), R1(*), RX(*), JROOT(*), RWORK(*), IWORK(*)
INTEGER I, JFLAG, LMASK
DOUBLE PRECISION H
DOUBLE PRECISION HMINR, T1, TEMP1, TEMP2, X, ZERO
LOGICAL ZROOT,Mroot
c -------------- masking -----------------
PARAMETER (LNIW=17)
DATA ZERO/0.0D0/
c -------------- masking -----------------
C-----------------------------------------------------------------------
C This routine checks for the presence of a root of R(T,Y,Y') in the
C vicinity of the current T, in a manner depending on the
C input flag JOB. It calls subroutine DROOTS to locate the root
C as precisely as possible.
C
C In addition to variables described previously, DRCHEK
C uses the following for communication..
C JOB = integer flag indicating type of call..
C JOB = 1 means the problem is being initialized, and DRCHEK
C is to look for a root at or very near the initial T.
C JOB = 2 means a continuation call to the solver was just
C made, and DRCHEK is to check for a root in the
C relevant part of the step last taken.
C JOB = 3 means a successful step was just taken, and DRCHEK
C is to look for a root in the interval of the step.
C R0 = array of length NRT, containing the value of R at T = T0.
C R0 is input for JOB .ge. 2 and on output in all cases.
C R1,RX = arrays of length NRT for work space.
C IRT = completion flag..
C IRT = 0 means no root was found.
C IRT = -1 means JOB = 1 and a zero was found both at T0 and
C and very close to T0.
C IRT = -2 means JOB = 2 and some Ri was found to have a zero
C both at T0 and very close to T0.
C IRT = 1 means a legitimate root was found (JOB = 2 or 3).
C On return, T0 is the root location, and Y is the
C corresponding solution vector.
c IRT = 2 A zero-crossing surface has detached from zero
c
C T0 = value of T at one endpoint of interval of interest. Only
C roots beyond T0 in the direction of integration are sought.
C T0 is input if JOB .ge. 2, and output in all cases.
C T0 is updated by DRCHEK, whether a root is found or not.
C Stored in the global array RWORK.
C TLAST = last value of T returned by the solver (input only).
C Stored in the global array RWORK.
C TOUT = final output time for the solver.
C IRFND = input flag showing whether the last step taken had a root.
C IRFND = 1 if it did, = 0 if not.
C Stored in the global array IWORK.
C INFO3 = copy of INFO(3) (input only).
C-----------------------------------------------------------------------
C
H = PSI(1)
IRT = 0
LMASK=IWORK(LNIW)-NRT
HMINR = (ABS(TN) + ABS(H))*UROUND*100.0D0
GO TO (100, 200, 300), JOB
C
C Evaluate R at initial T (= RWORK(LT0)); check for zero values.--------
100 CONTINUE
DO 103 I = 1,NRT
JROOT(I) = 0
IWORK(LMASK+I)=0
103 CONTINUE
CALL DDATRP1(TN,RWORK(LT0),Y,YP,NEQ,KOLD,PHI,PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = 1
DO 110 I = 1,NRT
IF (DABS(R0(I)) .EQ. ZERO) THEN
IWORK(LMASK+I)=1
ENDIF
110 CONTINUE
RETURN
C ======================================================================
200 CONTINUE
c in the previous call there was not a root, so this part can be ignored.
c IF (IWORK(LIRFND) .EQ. 0) GO TO 260
DO 203 I = 1,NRT
JROOT(I) = 0
203 IWORK(LMASK+I)=0
C If a root was found on the previous step, evaluate R0 = R(T0). -------
CALL DDATRP1 (TN, RWORK(LT0), Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
DO 210 I = 1,NRT
IF (dABS(R0(I)) .EQ. ZERO) THEN
IWORK(LMASK+I)=1
ENDIF
210 CONTINUE
C R0 has no zero components. Proceed to check relevant interval. ------
260 IF (TN .EQ. RWORK(LTLAST)) RETURN
C =====================================================
300 CONTINUE
C Set T1 to TN or TOUT, whichever comes first, and get R at T1. --------
IF (INFO3 .EQ. 1 .OR. (TOUT - TN)*H .GE. ZERO) THEN
T1 = TN
GO TO 330
ENDIF
T1 = TOUT
IF ((T1 - RWORK(LT0))*H .LE. ZERO) RETURN
330 CALL DDATRP1 (TN, T1, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, T1, Y, YP, NRT, R1, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
C Call DROOTS to search for root in interval from T0 to T1. -----------
JFLAG = 0
DO 340 I = 1,NRT
JROOT(I)=IWORK(LMASK+I)
340 CONTINUE
350 CONTINUE
CALL DROOTS2(NRT, HMINR, JFLAG,RWORK(LT0),T1, R0,R1,RX, X, JROOT)
IF (JFLAG .GT. 1) GO TO 360
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, X, Y, YP, NRT, RX, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
GO TO 350
360 CONTINUE
if (JFLAG.eq.2) then ! root found
ZROOT=.false.
MROOT=.false.
DO 320 I = 1,NRT
if(IWORK(LMASK+I).eq.1) then
if(ABS(R1(i)).ne. ZERO) THEN
JROOT(I)=SIGN(2.0D0,R1(I))
Mroot=.true.
ELSE
JROOT(I)=0
ENDIF
ELSE
IF (ABS(R1(I)) .EQ. ZERO) THEN
JROOT(I) = -SIGN(1.0D0,R0(I))
zroot=.true.
ELSE
IF (SIGN(1.0D0,R0(I)) .NE. SIGN(1.0D0,R1(I))) THEN
JROOT(I) = SIGN(1.0D0,R1(I) - R0(I))
zroot=.true.
ELSE
JROOT(I)=0
ENDIF
ENDIF
ENDIF
320 CONTINUE
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
if (Zroot) then
DO 380 I = 1,NRT
IF(ABS(JROOT(I)).EQ.2) JROOT(I)=0
380 CONTINUE
MROOT=.false.
IRT=1
endif
IF (MROOT) THEN
IRT=2
ENDIF
ENDIF
RWORK(LT0) = X
CALL DCOPY (NRT, RX, 1, R0, 1)
RETURN
C----------------------END OF SUBROUTINE DRCHEk2 -----------------------
END
c ===================================================================
SUBROUTINE DROOTS2(NRT, HMIN, JFLAG, X0, X1, R0, R1, RX, X, JROOT)
C
C***BEGIN PROLOGUE DROOTS
C***REFER TO DRCHEK
C***ROUTINES CALLED DCOPY
C***REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added root direction information in JROOT.
C***END PROLOGUE DROOTS
C
INTEGER NRT, JFLAG, JROOT
DOUBLE PRECISION HMIN, X0, X1, R0, R1, RX, X
DIMENSION R0(NRT), R1(NRT), RX(NRT), JROOT(NRT)
C-----------------------------------------------------------------------
C This subroutine finds the leftmost root of a set of arbitrary
C functions Ri(x) (i = 1,...,NRT) in an interval (X0,X1). Only roots
C of odd multiplicity (i.e. changes of sign of the Ri) are found.
C Here the sign of X1 - X0 is arbitrary, but is constant for a given
C problem, and -leftmost- means nearest to X0.
C The values of the vector-valued function R(x) = (Ri, i=1...NRT)
C are communicated through the call sequence of DROOTS.
C The method used is the Illinois algorithm.
C
C Reference:
C Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined
C Output Points for Solutions of ODEs, Sandia Report SAND80-0180,
C February 1980.
C
C Description of parameters.
C
C NRT = number of functions Ri, or the number of components of
C the vector valued function R(x). Input only.
C
C HMIN = resolution parameter in X. Input only. When a root is
C found, it is located only to within an error of HMIN in X.
C Typically, HMIN should be set to something on the order of
C 100 * UROUND * MAX(ABS(X0),ABS(X1)),
C where UROUND is the unit roundoff of the machine.
C
C JFLAG = integer flag for input and output communication.
C
C On input, set JFLAG = 0 on the first call for the problem,
C and leave it unchanged until the problem is completed.
C (The problem is completed when JFLAG .ge. 2 on return.)
C
C On output, JFLAG has the following values and meanings:
C JFLAG = 1 means DROOTS needs a value of R(x). Set RX = R(X)
C and call DROOTS again.
C JFLAG = 2 means a root has been found. The root is
C at X, and RX contains R(X). (Actually, X is the
C rightmost approximation to the root on an interval
C (X0,X1) of size HMIN or less.)
C JFLAG = 3 means X = X1 is a root, with one or more of the Ri
C being zero at X1 and no sign changes in (X0,X1).
C RX contains R(X) on output.
C JFLAG = 4 means no roots (of odd multiplicity) were
C found in (X0,X1) (no sign changes).
C
C X0,X1 = endpoints of the interval where roots are sought.
C X1 and X0 are input when JFLAG = 0 (first call), and
C must be left unchanged between calls until the problem is
C completed. X0 and X1 must be distinct, but X1 - X0 may be
C of either sign. However, the notion of -left- and -right-
C will be used to mean nearer to X0 or X1, respectively.
C When JFLAG .ge. 2 on return, X0 and X1 are output, and
C are the endpoints of the relevant interval.
C
C R0,R1 = arrays of length NRT containing the vectors R(X0) and R(X1),
C respectively. When JFLAG = 0, R0 and R1 are input and
C none of the R0(i) should be zero.
C When JFLAG .ge. 2 on return, R0 and R1 are output.
C
C RX = array of length NRT containing R(X). RX is input
C when JFLAG = 1, and output when JFLAG .ge. 2.
C
C X = independent variable value. Output only.
C When JFLAG = 1 on output, X is the point at which R(x)
C is to be evaluated and loaded into RX.
C When JFLAG = 2 or 3, X is the root.
C When JFLAG = 4, X is the right endpoint of the interval, X1.
C
C JROOT = integer array of length NRT. Output only.
C When JFLAG = 2 or 3, JROOT indicates which components
C of R(x) have a root at X, and the direction of the sign
C change across the root in the direction of integration.
C JROOT(i) = 1 if Ri has a root and changes from - to +.
C JROOT(i) = -1 if Ri has a root and changes from + to -.
C Otherwise JROOT(i) = 0.
C-----------------------------------------------------------------------
INTEGER I, IMAX, IMXOLD, LAST, NXLAST,ISTUCK,IUNSTUCK
DOUBLE PRECISION ALPHA, T2, TMAX, X2, ZERO,FRACINT,FRACSUB,TENTH
$ ,HALF,FIVE
LOGICAL ZROOT, SGNCHG, XROOT
SAVE ALPHA, X2, IMAX, LAST
DATA ZERO/0.0D0/, TENTH/0.1D0/, HALF/0.5D0/, FIVE/5.0D0/
IF (JFLAG .EQ. 1) GO TO 200
C JFLAG .ne. 1. Check for change in sign of R or zero at X1. ----------
IMAX = 0
ISTUCK=0
IUNSTUCK=0
TMAX = ZERO
ZROOT = .FALSE.
DO 120 I = 1,NRT
if ((JROOT(I) .eq. 1).AND.((ABS(R1(I)) .GT. ZERO))) IUNSTUCK=I
IF (ABS(R1(I)) .GT. ZERO) GO TO 110
if (JROOT(I) .eq. 1) GOTO 120
ISTUCK=I
GO TO 120
C At this point, R0(i) has been checked and cannot be zero. ------------
110 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,R1(I))) GO TO 120
T2 = ABS(R1(I)/(R1(I)-R0(I)))
IF (T2 .LE. TMAX) GO TO 120
TMAX = T2
IMAX = I
120 CONTINUE
IF (IMAX .GT. 0) GO TO 130
IMAX=ISTUCK
IF (IMAX .GT. 0) GO TO 130
IMAX=IUNSTUCK
IF (IMAX .GT. 0) GO TO 130
SGNCHG = .FALSE.
GO TO 140
130 SGNCHG = .TRUE.
140 IF (.NOT. SGNCHG) GO TO 420
C There is a sign change. Find the first root in the interval. --------
XROOT = .FALSE.
NXLAST = 0
LAST = 1
C
C Repeat until the first root in the interval is found. Loop point. ---
150 CONTINUE
IF (XROOT) GO TO 300
IF (NXLAST .EQ. LAST) GO TO 160
ALPHA = 1.0D0
GO TO 180
160 IF (LAST .EQ. 0) GO TO 170
ALPHA = 0.5D0*ALPHA
GO TO 180
170 ALPHA = 2.0D0*ALPHA
180 if((ABS(R0(IMAX)).EQ.ZERO).OR.(ABS(R1(IMAX)).EQ.ZERO)) THEN
X2=(X0+ALPHA*X1)/(1+ALPHA)
ELSE
X2 = X1 - (X1-X0)*R1(IMAX)/(R1(IMAX) - ALPHA*R0(IMAX))
ENDIF
IF (ABS(X2 - X0) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - X0)/HMIN
IF (FRACINT .GT. FIVE) THEN
FRACSUB = TENTH
ELSE
FRACSUB = HALF/FRACINT
ENDIF
X2 = X0 + FRACSUB*(X1 - X0)
ENDIF
IF (ABS(X1 - X2) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - X0)/HMIN
IF (FRACINT .GT. FIVE) THEN
FRACSUB = TENTH
ELSE
FRACSUB = HALF/FRACINT
ENDIF
X2 = X1 - FRACSUB*(X1 - X0)
ENDIF
c ----------------------- Hindmarsh ----------------
JFLAG = 1
X = X2
C Return to the calling routine to get a value of RX = R(X). ----
RETURN
C Check to see in which interval R changes sign. ----------------
200 IMXOLD = IMAX
IMAX = 0
ISTUCK=0
IUNSTUCK=0
TMAX = ZERO
ZROOT = .FALSE.
DO 220 I = 1,NRT
if ((JROOT(I).eq. 1).AND.((ABS(RX(I)) .GT. ZERO))) IUNSTUCK=I
IF (ABS(RX(I)) .GT. ZERO) GO TO 210
if (JROOT(I) .eq. 1) go to 220
ISTUCK=I
GO TO 220
C Neither R0(i) nor RX(i) can be zero at this point. -------------------
210 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,RX(I))) GO TO 220
T2 = ABS(RX(I)/(RX(I) - R0(I)))
IF (T2 .LE. TMAX) GO TO 220
TMAX = T2
IMAX = I
220 CONTINUE
IF (IMAX .GT. 0) GO TO 230
IMAX=ISTUCK
IF (IMAX .GT. 0) GO TO 230
IMAX=IUNSTUCK
IF (IMAX .GT. 0) GO TO 230
SGNCHG = .FALSE.
IMAX = IMXOLD
GO TO 240
230 SGNCHG = .TRUE.
240 NXLAST = LAST
IF (.NOT. SGNCHG) GO TO 260
C Sign change between X0 and X2, so replace X1 with X2. ----------------
X1 = X2
CALL DCOPY (NRT, RX, 1, R1, 1)
LAST = 1
XROOT = .FALSE.
GO TO 270
260 CONTINUE
CALL DCOPY (NRT, RX, 1, R0, 1)
X0 = X2
LAST = 0
XROOT = .FALSE.
270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE.
GO TO 150
C
C Return with X1 as the root. Set JROOT. Set X = X1 and RX = R1. -----
300 JFLAG = 2
c exit with root findings
X = X1
CALL DCOPY (NRT, R1, 1, RX, 1)
RETURN
C No sign changes in this interval. Set X = X1, return JFLAG = 4. -----
420 CALL DCOPY (NRT, R1, 1, RX, 1)
X = X1
JFLAG = 4
RETURN
C----------------------- END OF SUBROUTINE DROOTS ----------------------
END
c ========================================================================
SUBROUTINE DRCHEK1 (JOB, RT, NRT, NEQ, TN, TOUT, Y, YP, PHI, PSI,
* KOLD, R0, R1, RX, JROOT, IRT, UROUND, INFO3, RWORK, IWORK,
* RPAR, IPAR)
C
C*** BEGIN PROLOGUE DRCHEK
C*** REFER TO DDASKR
C*** ROUTINES CALLED DDATRP, DROOTS, DCOPY, RT
C*** REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added test for roots close when JOB = 2.
C*** END PROLOGUE DRCHEK
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C Pointers into IWORK:
PARAMETER (LNRTE=36, LIRFND=37)
C Pointers into RWORK:
PARAMETER (LT0=51, LTLAST=52)
EXTERNAL RT
INTEGER JOB, NRT, NEQ, KOLD, JROOT, IRT, INFO3, IWORK, IPAR
DOUBLE PRECISION TN, TOUT, Y, YP, PHI, PSI, R0, R1, RX, UROUND,
* RWORK, RPAR
DIMENSION Y(*), YP(*), PHI(NEQ,*), PSI(*),
* R0(*), R1(*), RX(*), JROOT(*), RWORK(*), IWORK(*)
INTEGER I, JFLAG, LMASK
DOUBLE PRECISION H
DOUBLE PRECISION HMINR, T1, TEMP1, TEMP2, X, ZERO
LOGICAL ZROOT
c -------------- masking -----------------
PARAMETER (LNIW=17)
DATA ZERO/0.0D0/
c -------------- masking -----------------
C-----------------------------------------------------------------------
C This routine checks for the presence of a root of R(T,Y,Y') in the
C vicinity of the current T, in a manner depending on the
C input flag JOB. It calls subroutine DROOTS to locate the root
C as precisely as possible.
C
C In addition to variables described previously, DRCHEK
C uses the following for communication..
C JOB = integer flag indicating type of call..
C JOB = 1 means the problem is being initialized, and DRCHEK
C is to look for a root at or very near the initial T.
C JOB = 2 means a continuation call to the solver was just
C made, and DRCHEK is to check for a root in the
C relevant part of the step last taken.
C JOB = 3 means a successful step was just taken, and DRCHEK
C is to look for a root in the interval of the step.
C R0 = array of length NRT, containing the value of R at T = T0.
C R0 is input for JOB .ge. 2 and on output in all cases.
C R1,RX = arrays of length NRT for work space.
C IRT = completion flag..
C IRT = 0 means no root was found.
C IRT = -1 means JOB = 1 and a zero was found both at T0 and
C and very close to T0.
C IRT = -2 means JOB = 2 and some Ri was found to have a zero
C both at T0 and very close to T0.
C IRT = 1 means a legitimate root was found (JOB = 2 or 3).
C On return, T0 is the root location, and Y is the
C corresponding solution vector.
c IRT = 2 A zero-crossing surface has detached from zero
c
C T0 = value of T at one endpoint of interval of interest. Only
C roots beyond T0 in the direction of integration are sought.
C T0 is input if JOB .ge. 2, and output in all cases.
C T0 is updated by DRCHEK, whether a root is found or not.
C Stored in the global array RWORK.
C TLAST = last value of T returned by the solver (input only).
C Stored in the global array RWORK.
C TOUT = final output time for the solver.
C IRFND = input flag showing whether the last step taken had a root.
C IRFND = 1 if it did, = 0 if not.
C Stored in the global array IWORK.
C INFO3 = copy of INFO(3) (input only).
C-----------------------------------------------------------------------
C
H = PSI(1)
IRT = 0
LMASK=IWORK(LNIW)-NRT
HMINR = (ABS(TN) + ABS(H))*UROUND*100.0D0
GO TO (100, 200, 300), JOB
C
C Evaluate R at initial T (= RWORK(LT0)); check for zero values.--------
100 CONTINUE
DO 103 I = 1,NRT
JROOT(I) = 0
103 IWORK(LMASK+I)=0
CALL DDATRP1(TN,RWORK(LT0),Y,YP,NEQ,KOLD,PHI,PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = 1
ZROOT = .FALSE.
DO 110 I = 1,NRT
IF (DABS(R0(I)) .EQ. ZERO) THEN
ZROOT = .TRUE.
JROOT(I)=1
ENDIF
110 CONTINUE
IF (.NOT. ZROOT) GO TO 190
C R has a zero at T. Look at R at T + (small increment). --------------
TEMP1 = SIGN(HMINR,H)
RWORK(LT0) = RWORK(LT0) + TEMP1
TEMP2 = TEMP1/H
DO 120 I = 1,NEQ
120 Y(I) = Y(I) + TEMP2*PHI(I,2)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
C --------- MASKING THE STUCK ZEROS IN COLD-RESTARTS
IRT = 0
DO 130 I = 1,NRT
IF (JROOT(I) .EQ. 1) THEN
IF (ABS(R0(I)) .EQ. ZERO) THEN
IWORK(LMASK+I)=1
ELSE
c . to take one step through DDSTP then then in the next arrival->exit!
IRT = 2
JROOT(I)=SIGN(2.0D0,R0(I))
ENDIF
ENDIF
130 CONTINUE
190 CONTINUE
RETURN
C
200 CONTINUE
c in the previous call there was not a root, so this part can be ignored.
IF (IWORK(LIRFND) .EQ. 0) GO TO 260
c --------------- INITIALIZING THE MASKS
DO 203 I = 1,NRT
JROOT(I) = 0
203 IWORK(LMASK+I)=0
C If a root was found on the previous step, evaluate R0 = R(T0). -------
CALL DDATRP1 (TN, RWORK(LT0), Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
ZROOT = .FALSE.
DO 210 I = 1,NRT
IF (ABS(R0(I)) .EQ. ZERO) THEN
ZROOT = .TRUE.
JROOT(I) = 1
ENDIF
210 CONTINUE
IF (.NOT. ZROOT) GO TO 260
C R has a zero at T0. Look at R at T0+ = T0 + (small increment). ------
TEMP1 = SIGN(HMINR,H)
RWORK(LT0) = RWORK(LT0) + TEMP1
IF ((RWORK(LT0) - TN)*H .LT. ZERO) GO TO 230
TEMP2 = TEMP1/H
DO 220 I = 1,NEQ
Y(I) = Y(I) + TEMP2*PHI(I,2)
220 continue
GO TO 240
230 CALL DDATRP1 (TN, RWORK(LT0), Y, YP, NEQ, KOLD, PHI, PSI)
240 CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
DO 250 I = 1,NRT
IF (ABS(R0(I)) .GT. ZERO) GO TO 250
C If Ri has a zero at both T0+ and T0, return an error flag. -----------
IF (JROOT(I) .EQ. 1) THEN
C . MASKING THE STUCK ZEROS IN HOT-RESTARTS
IWORK(LMASK+I)=1
JROOT(I)=0
ELSE
C If Ri has a zero at T0+, but not at T0, return valid root. -----------
JROOT(I) = -SIGN(1.0D0,R0(I))
IRT = 1
ENDIF
250 CONTINUE
IF (IRT .EQ. 1) RETURN
C R0 has no zero components. Proceed to check relevant interval. ------
260 IF (TN .EQ. RWORK(LTLAST)) RETURN
C
300 CONTINUE
C AT THE BEGINING OF THE PREVIOUS STEP THERE WERE A MASK-LIFTING
IF (IWORK(LIRFND) .EQ. 2) THEN
IWORK(LIRFND)=0
IRT=2
RETURN
ENDIF
C Set T1 to TN or TOUT, whichever comes first, and get R at T1. --------
IF (INFO3 .EQ. 1 .OR. (TOUT - TN)*H .GE. ZERO) THEN
T1 = TN
GO TO 330
ENDIF
T1 = TOUT
IF ((T1 - RWORK(LT0))*H .LE. ZERO) RETURN
330 CALL DDATRP1 (TN, T1, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, T1, Y, YP, NRT, R1, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
C . PASSING THE MASK THROUGH DROOT2 VIA JROOT(I)
DO 331 I = 1,NRT
JROOT(I)=0
331 IF(IWORK(LMASK+I).EQ.1) jroot(i)=1
C Call DROOTS to search for root in interval from T0 to T1. -----------
JFLAG = 0
350 CONTINUE
CALL DROOTS1(NRT, HMINR, JFLAG,RWORK(LT0),T1, R0,R1,RX, X, JROOT)
IF (JFLAG .GT. 1) GO TO 360
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, X, Y, YP, NRT, RX, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
GO TO 350
360 RWORK(LT0) = X
CALL DCOPY (NRT, RX, 1, R0, 1)
IF (JFLAG .NE. 4) THEN
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
ZROOT=.FALSE.
DO 370 I = 1,NRT
IF(ABS(JROOT(I)).EQ.1) THEN
ZROOT=.TRUE.
GOTO 375
ENDIF
370 CONTINUE
375 CONTINUE
IF(ZROOT) THEN
DO 380 I = 1,NRT
IF(ABS(JROOT(I)).EQ.2) JROOT(I)=0
380 CONTINUE
IRT=1
ELSE
IRT=2
ENDIF
ENDIF
RETURN
C---------------------- END OF SUBROUTINE DRCHE -----------------------
END
SUBROUTINE DROOTS1(NRT, HMIN, JFLAG, X0, X1, R0, R1, RX, X, JROOT)
C
C***BEGIN PROLOGUE DROOTS
C***REFER TO DRCHEK
C***ROUTINES CALLED DCOPY
C***REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added root direction information in JROOT.
C***END PROLOGUE DROOTS
C
INTEGER NRT, JFLAG, JROOT
DOUBLE PRECISION HMIN, X0, X1, R0, R1, RX, X
DIMENSION R0(NRT), R1(NRT), RX(NRT), JROOT(NRT)
C-----------------------------------------------------------------------
C This subroutine finds the leftmost root of a set of arbitrary
C functions Ri(x) (i = 1,...,NRT) in an interval (X0,X1). Only roots
C of odd multiplicity (i.e. changes of sign of the Ri) are found.
C Here the sign of X1 - X0 is arbitrary, but is constant for a given
C problem, and -leftmost- means nearest to X0.
C The values of the vector-valued function R(x) = (Ri, i=1...NRT)
C are communicated through the call sequence of DROOTS.
C The method used is the Illinois algorithm.
C
C Reference:
C Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined
C Output Points for Solutions of ODEs, Sandia Report SAND80-0180,
C February 1980.
C
C Description of parameters.
C
C NRT = number of functions Ri, or the number of components of
C the vector valued function R(x). Input only.
C
C HMIN = resolution parameter in X. Input only. When a root is
C found, it is located only to within an error of HMIN in X.
C Typically, HMIN should be set to something on the order of
C 100 * UROUND * MAX(ABS(X0),ABS(X1)),
C where UROUND is the unit roundoff of the machine.
C
C JFLAG = integer flag for input and output communication.
C
C On input, set JFLAG = 0 on the first call for the problem,
C and leave it unchanged until the problem is completed.
C (The problem is completed when JFLAG .ge. 2 on return.)
C
C On output, JFLAG has the following values and meanings:
C JFLAG = 1 means DROOTS needs a value of R(x). Set RX = R(X)
C and call DROOTS again.
C JFLAG = 2 means a root has been found. The root is
C at X, and RX contains R(X). (Actually, X is the
C rightmost approximation to the root on an interval
C (X0,X1) of size HMIN or less.)
C JFLAG = 3 means X = X1 is a root, with one or more of the Ri
C being zero at X1 and no sign changes in (X0,X1).
C RX contains R(X) on output.
C JFLAG = 4 means no roots (of odd multiplicity) were
C found in (X0,X1) (no sign changes).
C
C X0,X1 = endpoints of the interval where roots are sought.
C X1 and X0 are input when JFLAG = 0 (first call), and
C must be left unchanged between calls until the problem is
C completed. X0 and X1 must be distinct, but X1 - X0 may be
C of either sign. However, the notion of -left- and -right-
C will be used to mean nearer to X0 or X1, respectively.
C When JFLAG .ge. 2 on return, X0 and X1 are output, and
C are the endpoints of the relevant interval.
C
C R0,R1 = arrays of length NRT containing the vectors R(X0) and R(X1),
C respectively. When JFLAG = 0, R0 and R1 are input and
C none of the R0(i) should be zero.
C When JFLAG .ge. 2 on return, R0 and R1 are output.
C
C RX = array of length NRT containing R(X). RX is input
C when JFLAG = 1, and output when JFLAG .ge. 2.
C
C X = independent variable value. Output only.
C When JFLAG = 1 on output, X is the point at which R(x)
C is to be evaluated and loaded into RX.
C When JFLAG = 2 or 3, X is the root.
C When JFLAG = 4, X is the right endpoint of the interval, X1.
C
C JROOT = integer array of length NRT. Output only.
C When JFLAG = 2 or 3, JROOT indicates which components
C of R(x) have a root at X, and the direction of the sign
C change across the root in the direction of integration.
C JROOT(i) = 1 if Ri has a root and changes from - to +.
C JROOT(i) = -1 if Ri has a root and changes from + to -.
C Otherwise JROOT(i) = 0.
C-----------------------------------------------------------------------
INTEGER I, IMAX, IMXOLD, LAST, NXLAST,ISTUCK,IUNSTUCK
DOUBLE PRECISION ALPHA, T2, TMAX, X2, ZERO,FRACINT,FRACSUB,TENTH
$ ,HALF,FIVE
LOGICAL ZROOT, SGNCHG, XROOT
SAVE ALPHA, X2, IMAX, LAST
DATA ZERO/0.0D0/, TENTH/0.1D0/, HALF/0.5D0/, FIVE/5.0D0/
c
IF (JFLAG .EQ. 1) GO TO 200
C JFLAG .ne. 1. Check for change in sign of R or zero at X1. ----------
IMAX = 0
ISTUCK=0
IUNSTUCK=0
TMAX = ZERO
ZROOT = .FALSE.
DO 120 I = 1,NRT
if ((jroot(i) .eq. 1).AND.((ABS(R1(I)) .GT. ZERO))) IUNSTUCK=I
IF (ABS(R1(I)) .GT. ZERO) GO TO 110
if (jroot(i) .eq. 1) GOTO 120
ISTUCK=I
GO TO 120
C At this point, R0(i) has been checked and cannot be zero. ------------
110 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,R1(I))) GO TO 120
T2 = ABS(R1(I)/(R1(I)-R0(I)))
IF (T2 .LE. TMAX) GO TO 120
TMAX = T2
IMAX = I
120 CONTINUE
IF (IMAX .GT. 0) GO TO 130
IMAX=ISTUCK
IF (IMAX .GT. 0) GO TO 130
IMAX=IUNSTUCK
IF (IMAX .GT. 0) GO TO 130
SGNCHG = .FALSE.
GO TO 140
130 SGNCHG = .TRUE.
140 IF (.NOT. SGNCHG) GO TO 420
C There is a sign change. Find the first root in the interval. --------
XROOT = .FALSE.
NXLAST = 0
LAST = 1
C
C Repeat until the first root in the interval is found. Loop point. ---
150 CONTINUE
IF (XROOT) GO TO 300
IF (NXLAST .EQ. LAST) GO TO 160
ALPHA = 1.0D0
GO TO 180
160 IF (LAST .EQ. 0) GO TO 170
ALPHA = 0.5D0*ALPHA
GO TO 180
170 ALPHA = 2.0D0*ALPHA
180 if((ABS(R0(IMAX)).EQ.ZERO).OR.(ABS(R1(IMAX)).EQ.ZERO)) THEN
X2=(X0+ALPHA*X1)/(1+ALPHA)
ELSE
X2 = X1 - (X1-X0)*R1(IMAX)/(R1(IMAX) - ALPHA*R0(IMAX))
ENDIF
c----------------------- Hindmarsh ----------------
c I recently studied the rootfinding algorithm in some detail, and
c found that there is a high potential for an infinite loop within
c the subroutine DROOTS/SROOTS. This is caused by an adjustment to
c the new computed iterate, called X2 there at statement 180. The
c adjustment following 180 is faulty, and should be replaced as
c follows. This logic moves X2 away from one endpoint of the current
c interval bracketing the root if it is too close, but in a way that
c cannot result in an infinite loop. Even if you have not
c encountered any trouble at this spot in DASKR, I recommend you
c make the change.
cc IF ((ABS(X2-X0) .LT. HMIN) .AND.
cc 1 (ABS(X1-X0) .GT. 10.0D0*HMIN)) X2 = X0 + 0.1D0*(X1-X0)
IF (ABS(X2 - X0) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - X0)/HMIN
IF (FRACINT .GT. FIVE) THEN
FRACSUB = TENTH
ELSE
FRACSUB = HALF/FRACINT
ENDIF
X2 = X0 + FRACSUB*(X1 - X0)
ENDIF
IF (ABS(X1 - X2) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - X0)/HMIN
IF (FRACINT .GT. FIVE) THEN
FRACSUB = TENTH
ELSE
FRACSUB = HALF/FRACINT
ENDIF
X2 = X1 - FRACSUB*(X1 - X0)
ENDIF
c----------------------- Hindmarsh ----------------
JFLAG = 1
X = X2
C Return to the calling routine to get a value of RX = R(X). ----
RETURN
C Check to see in which interval R changes sign. ----------------
200 IMXOLD = IMAX
IMAX = 0
ISTUCK=0
IUNSTUCK=0
TMAX = ZERO
ZROOT = .FALSE.
DO 220 I = 1,NRT
if ((jroot(i) .eq. 1).AND.((ABS(RX(I)) .GT. ZERO))) IUNSTUCK=I
IF (ABS(RX(I)) .GT. ZERO) GO TO 210
if (jroot(i) .eq. 1) go to 220
ISTUCK=I
GO TO 220
C Neither R0(i) nor RX(i) can be zero at this point. -------------------
210 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,RX(I))) GO TO 220
T2 = ABS(RX(I)/(RX(I) - R0(I)))
IF (T2 .LE. TMAX) GO TO 220
TMAX = T2
IMAX = I
220 CONTINUE
IF (IMAX .GT. 0) GO TO 230
IMAX=ISTUCK
IF (IMAX .GT. 0) GO TO 230
IMAX=IUNSTUCK
IF (IMAX .GT. 0) GO TO 230
SGNCHG = .FALSE.
IMAX = IMXOLD
GO TO 240
230 SGNCHG = .TRUE.
240 NXLAST = LAST
IF (.NOT. SGNCHG) GO TO 260
C Sign change between X0 and X2, so replace X1 with X2. ----------------
X1 = X2
CALL DCOPY (NRT, RX, 1, R1, 1)
LAST = 1
XROOT = .FALSE.
GO TO 270
260 CONTINUE
CALL DCOPY (NRT, RX, 1, R0, 1)
X0 = X2
LAST = 0
XROOT = .FALSE.
270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE.
GO TO 150
C
C Return with X1 as the root. Set JROOT. Set X = X1 and RX = R1. -----
300 JFLAG = 2
X = X1
CALL DCOPY (NRT, R1, 1, RX, 1)
DO 320 I = 1,NRT
if(jroot(i).eq.1) then
if(ABS(R1(i)).ne. ZERO) THEN
JROOT(I)=SIGN(2.0D0,R1(I))
ELSE
JROOT(I)=0
ENDIF
ELSE
IF (ABS(R1(I)) .EQ. ZERO) THEN
JROOT(I) = -SIGN(1.0D0,R0(I))
ELSE
IF (SIGN(1.0D0,R0(I)) .NE. SIGN(1.0D0,R1(I))) THEN
JROOT(I) = SIGN(1.0D0,R1(I) - R0(I))
ELSE
JROOT(I)=0
ENDIF
ENDIF
ENDIF
320 CONTINUE
RETURN
C No sign changes in this interval. Set X = X1, return JFLAG = 4. -----
420 CALL DCOPY (NRT, R1, 1, RX, 1)
X = X1
JFLAG = 4
RETURN
C----------------------- END OF SUBROUTINE DROOTS ----------------------
END
SUBROUTINE DRCHEK0 (JOB, RT, NRT, NEQ, TN, TOUT, Y, YP, PHI, PSI,
* KOLD, R0, R1, RX, JROOT, IRT, UROUND, INFO3, RWORK, IWORK,
* RPAR, IPAR)
C
C***BEGIN PROLOGUE DRCHEK
C***REFER TO DDASKR
C***ROUTINES CALLED DDATRP, DROOTS, DCOPY, RT
C***REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added test for roots close when JOB = 2.
C***END PROLOGUE DRCHEK
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C Pointers into IWORK:
PARAMETER (LNRTE=36, LIRFND=37)
C Pointers into RWORK:
PARAMETER (LT0=51, LTLAST=52)
EXTERNAL RT
INTEGER JOB, NRT, NEQ, KOLD, JROOT, IRT, INFO3, IWORK, IPAR
DOUBLE PRECISION TN, TOUT, Y, YP, PHI, PSI, R0, R1, RX, UROUND,
* RWORK, RPAR
DIMENSION Y(*), YP(*), PHI(NEQ,*), PSI(*),
* R0(*), R1(*), RX(*), JROOT(*), RWORK(*), IWORK(*)
INTEGER I, JFLAG
DOUBLE PRECISION H
DOUBLE PRECISION HMINR, T1, TEMP1, TEMP2, X, ZERO
LOGICAL ZROOT
DATA ZERO/0.0D0/
C-----------------------------------------------------------------------
C This routine checks for the presence of a root of R(T,Y,Y') in the
C vicinity of the current T, in a manner depending on the
C input flag JOB. It calls subroutine DROOTS to locate the root
C as precisely as possible.
C
C In addition to variables described previously, DRCHEK
C uses the following for communication..
C JOB = integer flag indicating type of call..
C JOB = 1 means the problem is being initialized, and DRCHEK
C is to look for a root at or very near the initial T.
C JOB = 2 means a continuation call to the solver was just
C made, and DRCHEK is to check for a root in the
C relevant part of the step last taken.
C JOB = 3 means a successful step was just taken, and DRCHEK
C is to look for a root in the interval of the step.
C R0 = array of length NRT, containing the value of R at T = T0.
C R0 is input for JOB .ge. 2 and on output in all cases.
C R1,RX = arrays of length NRT for work space.
C IRT = completion flag..
C IRT = 0 means no root was found.
C IRT = -1 means JOB = 1 and a zero was found both at T0 and
C and very close to T0.
C IRT = -2 means JOB = 2 and some Ri was found to have a zero
C both at T0 and very close to T0.
C IRT = 1 means a legitimate root was found (JOB = 2 or 3).
C On return, T0 is the root location, and Y is the
C corresponding solution vector.
C T0 = value of T at one endpoint of interval of interest. Only
C roots beyond T0 in the direction of integration are sought.
C T0 is input if JOB .ge. 2, and output in all cases.
C T0 is updated by DRCHEK, whether a root is found or not.
C Stored in the global array RWORK.
C TLAST = last value of T returned by the solver (input only).
C Stored in the global array RWORK.
C TOUT = final output time for the solver.
C IRFND = input flag showing whether the last step taken had a root.
C IRFND = 1 if it did, = 0 if not.
C Stored in the global array IWORK.
C INFO3 = copy of INFO(3) (input only).
C-----------------------------------------------------------------------
C
H = PSI(1)
IRT = 0
DO 10 I = 1,NRT
10 JROOT(I) = 0
HMINR = (ABS(TN) + ABS(H))*UROUND*100.0D0
C
GO TO (100, 200, 300), JOB
C
C Evaluate R at initial T (= RWORK(LT0)); check for zero values.--------
100 CONTINUE
CALL DDATRP1(TN,RWORK(LT0),Y,YP,NEQ,KOLD,PHI,PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = 1
ZROOT = .FALSE.
DO 110 I = 1,NRT
110 IF (ABS(R0(I)) .EQ. ZERO) ZROOT = .TRUE.
IF (.NOT. ZROOT) GO TO 190
C R has a zero at T. Look at R at T + (small increment). --------------
TEMP1 = SIGN(HMINR,H)
RWORK(LT0) = RWORK(LT0) + TEMP1
TEMP2 = TEMP1/H
DO 120 I = 1,NEQ
120 Y(I) = Y(I) + TEMP2*PHI(I,2)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
ZROOT = .FALSE.
DO 130 I = 1,NRT
130 IF (ABS(R0(I)) .EQ. ZERO) ZROOT = .TRUE.
IF (.NOT. ZROOT) GO TO 190
C R has a zero at T and also close to T. Take error return. -----------
IRT = -1
RETURN
C
190 CONTINUE
RETURN
C
200 CONTINUE
c if in the previous step a z-crossing or mask lifting has occured...
IF (IWORK(LIRFND) .EQ. 0) GO TO 260
C If a root was found on the previous step, evaluate R0 = R(T0). ----
CALL DDATRP1 (TN, RWORK(LT0), Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
ZROOT = .FALSE.
DO 210 I = 1,NRT
IF (ABS(R0(I)) .EQ. ZERO) THEN
ZROOT = .TRUE.
JROOT(I) = 1
ENDIF
210 CONTINUE
IF (.NOT. ZROOT) GO TO 260
C R has a zero at T0. Look at R at T0+ = T0 + (small increment). ------
TEMP1 = SIGN(HMINR,H)
RWORK(LT0) = RWORK(LT0) + TEMP1
IF ((RWORK(LT0) - TN)*H .LT. ZERO) GO TO 230
TEMP2 = TEMP1/H
DO 220 I = 1,NEQ
220 Y(I) = Y(I) + TEMP2*PHI(I,2)
GO TO 240
230 CALL DDATRP1 (TN, RWORK(LT0), Y, YP, NEQ, KOLD, PHI, PSI)
240 CALL RT (NEQ, RWORK(LT0), Y, YP, NRT, R0, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
DO 250 I = 1,NRT
IF (ABS(R0(I)) .GT. ZERO) GO TO 250
C If Ri has a zero at both T0+ and T0, return an error flag. -----------
IF (JROOT(I) .EQ. 1) THEN
IRT = -2
RETURN
ELSE
C If Ri has a zero at T0+, but not at T0, return valid root. -----------
JROOT(I) = -SIGN(1.0D0,R0(I))
IRT = 1
ENDIF
250 CONTINUE
IF (IRT .EQ. 1) RETURN
C R0 has no zero components. Proceed to check relevant interval. ------
260 IF (TN .EQ. RWORK(LTLAST)) RETURN
C
300 CONTINUE
C Set T1 to TN or TOUT, whichever comes first, and get R at T1. --------
IF (INFO3 .EQ. 1 .OR. (TOUT - TN)*H .GE. ZERO) THEN
T1 = TN
GO TO 330
ENDIF
T1 = TOUT
IF ((T1 - RWORK(LT0))*H .LE. ZERO) GO TO 390
330 CALL DDATRP1 (TN, T1, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, T1, Y, YP, NRT, R1, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
C Call DROOTS to search for root in interval from T0 to T1. ------------
JFLAG = 0
350 CONTINUE
CALL DROOTS0(NRT, HMINR, JFLAG,RWORK(LT0),T1, R0,R1,RX, X, JROOT)
IF (JFLAG .GT. 1) GO TO 360
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, X, Y, YP, NRT, RX, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
GO TO 350
360 RWORK(LT0) = X
CALL DCOPY (NRT, RX, 1, R0, 1)
IF (JFLAG .EQ. 4) GO TO 390
C Found a root. Interpolate to X and return. --------------------------
CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
IRT = 1
RETURN
C
390 CONTINUE
RETURN
C---------------------- END OF SUBROUTINE DRCHEK -----------------------
END
SUBROUTINE DROOTS0(NRT, HMIN, JFLAG, X0, X1, R0, R1, RX, X, JROOT)
C
C***BEGIN PROLOGUE DROOTS
C***REFER TO DRCHEK
C***ROUTINES CALLED DCOPY
C***REVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added root direction information in JROOT.
C***END PROLOGUE DROOTS
C
INTEGER NRT, JFLAG, JROOT
DOUBLE PRECISION HMIN, X0, X1, R0, R1, RX, X
DIMENSION R0(NRT), R1(NRT), RX(NRT), JROOT(NRT)
C-----------------------------------------------------------------------
C This subroutine finds the leftmost root of a set of arbitrary
C functions Ri(x) (i = 1,...,NRT) in an interval (X0,X1). Only roots
C of odd multiplicity (i.e. changes of sign of the Ri) are found.
C Here the sign of X1 - X0 is arbitrary, but is constant for a given
C problem, and -leftmost- means nearest to X0.
C The values of the vector-valued function R(x) = (Ri, i=1...NRT)
C are communicated through the call sequence of DROOTS.
C The method used is the Illinois algorithm.
C
C Reference:
C Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined
C Output Points for Solutions of ODEs, Sandia Report SAND80-0180,
C February 1980.
C
C Description of parameters.
C
C NRT = number of functions Ri, or the number of components of
C the vector valued function R(x). Input only.
C
C HMIN = resolution parameter in X. Input only. When a root is
C found, it is located only to within an error of HMIN in X.
C Typically, HMIN should be set to something on the order of
C 100 * UROUND * MAX(ABS(X0),ABS(X1)),
C where UROUND is the unit roundoff of the machine.
C
C JFLAG = integer flag for input and output communication.
C
C On input, set JFLAG = 0 on the first call for the problem,
C and leave it unchanged until the problem is completed.
C (The problem is completed when JFLAG .ge. 2 on return.)
C
C On output, JFLAG has the following values and meanings:
C JFLAG = 1 means DROOTS needs a value of R(x). Set RX = R(X)
C and call DROOTS again.
C JFLAG = 2 means a root has been found. The root is
C at X, and RX contains R(X). (Actually, X is the
C rightmost approximation to the root on an interval
C (X0,X1) of size HMIN or less.)
C JFLAG = 3 means X = X1 is a root, with one or more of the Ri
C being zero at X1 and no sign changes in (X0,X1).
C RX contains R(X) on output.
C JFLAG = 4 means no roots (of odd multiplicity) were
C found in (X0,X1) (no sign changes).
C
C X0,X1 = endpoints of the interval where roots are sought.
C X1 and X0 are input when JFLAG = 0 (first call), and
C must be left unchanged between calls until the problem is
C completed. X0 and X1 must be distinct, but X1 - X0 may be
C of either sign. However, the notion of -left- and -right-
C will be used to mean nearer to X0 or X1, respectively.
C When JFLAG .ge. 2 on return, X0 and X1 are output, and
C are the endpoints of the relevant interval.
C
C R0,R1 = arrays of length NRT containing the vectors R(X0) and R(X1),
C respectively. When JFLAG = 0, R0 and R1 are input and
C none of the R0(i) should be zero.
C When JFLAG .ge. 2 on return, R0 and R1 are output.
C
C RX = array of length NRT containing R(X). RX is input
C when JFLAG = 1, and output when JFLAG .ge. 2.
C
C X = independent variable value. Output only.
C When JFLAG = 1 on output, X is the point at which R(x)
C is to be evaluated and loaded into RX.
C When JFLAG = 2 or 3, X is the root.
C When JFLAG = 4, X is the right endpoint of the interval, X1.
C
C JROOT = integer array of length NRT. Output only.
C When JFLAG = 2 or 3, JROOT indicates which components
C of R(x) have a root at X, and the direction of the sign
C change across the root in the direction of integration.
C JROOT(i) = 1 if Ri has a root and changes from - to +.
C JROOT(i) = -1 if Ri has a root and changes from + to -.
C Otherwise JROOT(i) = 0.
C-----------------------------------------------------------------------
INTEGER I, IMAX, IMXOLD, LAST, NXLAST
DOUBLE PRECISION ALPHA, T2, TMAX, X2, ZERO
LOGICAL ZROOT, SGNCHG, XROOT
SAVE ALPHA, X2, IMAX, LAST
DATA ZERO/0.0D0/
C
IF (JFLAG .EQ. 1) GO TO 200
C JFLAG .ne. 1. Check for change in sign of R or zero at X1. ----------
IMAX = 0
TMAX = ZERO
ZROOT = .FALSE.
DO 120 I = 1,NRT
IF (ABS(R1(I)) .GT. ZERO) GO TO 110
ZROOT = .TRUE.
GO TO 120
C At this point, R0(i) has been checked and cannot be zero. ------------
110 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,R1(I))) GO TO 120
T2 = ABS(R1(I)/(R1(I)-R0(I)))
IF (T2 .LE. TMAX) GO TO 120
TMAX = T2
IMAX = I
120 CONTINUE
IF (IMAX .GT. 0) GO TO 130
SGNCHG = .FALSE.
GO TO 140
130 SGNCHG = .TRUE.
140 IF (.NOT. SGNCHG) GO TO 400
C There is a sign change. Find the first root in the interval. --------
XROOT = .FALSE.
NXLAST = 0
LAST = 1
C
C Repeat until the first root in the interval is found. Loop point. ---
150 CONTINUE
IF (XROOT) GO TO 300
IF (NXLAST .EQ. LAST) GO TO 160
ALPHA = 1.0D0
GO TO 180
160 IF (LAST .EQ. 0) GO TO 170
ALPHA = 0.5D0*ALPHA
GO TO 180
170 ALPHA = 2.0D0*ALPHA
180 X2 = X1 - (X1-X0)*R1(IMAX)/(R1(IMAX) - ALPHA*R0(IMAX))
IF ((ABS(X2-X0) .LT. HMIN) .AND.
1 (ABS(X1-X0) .GT. 10.0D0*HMIN)) X2 = X0 + 0.1D0*(X1-X0)
JFLAG = 1
X = X2
C Return to the calling routine to get a value of RX = R(X). -----------
RETURN
C Check to see in which interval R changes sign. -----------------------
200 IMXOLD = IMAX
IMAX = 0
TMAX = ZERO
ZROOT = .FALSE.
DO 220 I = 1,NRT
IF (ABS(RX(I)) .GT. ZERO) GO TO 210
ZROOT = .TRUE.
GO TO 220
C Neither R0(i) nor RX(i) can be zero at this point. -------------------
210 IF (SIGN(1.0D0,R0(I)) .EQ. SIGN(1.0D0,RX(I))) GO TO 220
T2 = ABS(RX(I)/(RX(I) - R0(I)))
IF (T2 .LE. TMAX) GO TO 220
TMAX = T2
IMAX = I
220 CONTINUE
IF (IMAX .GT. 0) GO TO 230
SGNCHG = .FALSE.
IMAX = IMXOLD
GO TO 240
230 SGNCHG = .TRUE.
240 NXLAST = LAST
IF (.NOT. SGNCHG) GO TO 250
C Sign change between X0 and X2, so replace X1 with X2. ----------------
X1 = X2
CALL DCOPY (NRT, RX, 1, R1, 1)
LAST = 1
XROOT = .FALSE.
GO TO 270
250 IF (.NOT. ZROOT) GO TO 260
C Zero value at X2 and no sign change in (X0,X2), so X2 is a root. -----
X1 = X2
CALL DCOPY (NRT, RX, 1, R1, 1)
XROOT = .TRUE.
GO TO 270
C No sign change between X0 and X2. Replace X0 with X2. ---------------
260 CONTINUE
CALL DCOPY (NRT, RX, 1, R0, 1)
X0 = X2
LAST = 0
XROOT = .FALSE.
270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE.
GO TO 150
C
C Return with X1 as the root. Set JROOT. Set X = X1 and RX = R1. -----
300 JFLAG = 2
X = X1
CALL DCOPY (NRT, R1, 1, RX, 1)
DO 320 I = 1,NRT
JROOT(I) = 0
IF (ABS(R1(I)) .EQ. ZERO) THEN
JROOT(I) = -SIGN(1.0D0,R0(I))
GO TO 320
ENDIF
IF (SIGN(1.0D0,R0(I)) .NE. SIGN(1.0D0,R1(I)))
1 JROOT(I) = SIGN(1.0D0,R1(I) - R0(I))
320 CONTINUE
RETURN
C
C No sign change in the interval. Check for zero at right endpoint. ---
400 IF (.NOT. ZROOT) GO TO 420
C
C Zero value at X1 and no sign change in (X0,X1). Return JFLAG = 3. ---
X = X1
CALL DCOPY (NRT, R1, 1, RX, 1)
DO 410 I = 1,NRT
JROOT(I) = 0
IF (ABS(R1(I)) .EQ. ZERO) JROOT(I) = -SIGN(1.0D0,R0(I))
410 CONTINUE
JFLAG = 3
RETURN
C
C No sign changes in this interval. Set X = X1, return JFLAG = 4. -----
420 CALL DCOPY (NRT, R1, 1, RX, 1)
X = X1
JFLAG = 4
RETURN
C----------------------- END OF SUBROUTINE DROOTS ----------------------
END
SUBROUTINE DDASIC (X, Y, YPRIME, NEQ, ICOPT, ID, RES, JAC, PSOL,
* H, TSCALE, WT, NIC, IDID, RPAR, IPAR, PHI, SAVR, DELTA, E,
* YIC, YPIC, PWK, WM, IWM, UROUND, EPLI, SQRTN, RSQRTN,
* EPCONI, STPTOL, JFLG, ICNFLG, ICNSTR, NLSIC)
C
C***BEGIN PROLOGUE DDASIC
C***REFER TO DDASPK
C***DATE WRITTEN 940628 (YYMMDD)
C***REVISION DATE 941206 (YYMMDD)
C***REVISION DATE 950714 (YYMMDD)
C***REVISION DATE 000628 TSCALE argument added.
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DDASIC is a driver routine to compute consistent initial values
C for Y and YPRIME. There are two different options:
C Denoting the differential variables in Y by Y_d, and
C the algebraic variables by Y_a, the problem solved is either:
C 1. Given Y_d, calculate Y_a and Y_d', or
C 2. Given Y', calculate Y.
C In either case, initial values for the given components
C are input, and initial guesses for the unknown components
C must also be provided as input.
C
C The external routine NLSIC solves the resulting nonlinear system.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector at X.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of equations to be integrated.
C ICOPT -- Flag indicating initial condition option chosen.
C ICOPT = 1 for option 1 above.
C ICOPT = 2 for option 2.
C ID -- Array of dimension NEQ, which must be initialized
C if option 1 is chosen.
C ID(i) = +1 if Y_i is a differential variable,
C ID(i) = -1 if Y_i is an algebraic variable.
C RES -- External user-supplied subroutine to evaluate the
C residual. See RES description in DDASPK prologue.
C JAC -- External user-supplied routine to update Jacobian
C or preconditioner information in the nonlinear solver
C (optional). See JAC description in DDASPK prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C See PSOL in DDASPK prologue.
C H -- Scaling factor in iteration matrix. DDASIC may
C reduce H to achieve convergence.
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C WT -- Vector of weights for error criterion.
C NIC -- Input number of initial condition calculation call
C (= 1 or 2).
C IDID -- Completion code. See IDID in DDASPK prologue.
C RPAR,IPAR -- Real and integer parameter arrays that
C are used for communication between the
C calling program and external user routines.
C They are not altered by DNSK
C PHI -- Work space for DDASIC of length at least 2*NEQ.
C SAVR -- Work vector for DDASIC of length NEQ.
C DELTA -- Work vector for DDASIC of length NEQ.
C E -- Work vector for DDASIC of length NEQ.
C YIC,YPIC -- Work vectors for DDASIC, each of length NEQ.
C PWK -- Work vector for DDASIC of length NEQ.
C WM,IWM -- Real and integer arrays storing
C information required by the linear solver.
C EPCONI -- Test constant for Newton iteration convergence.
C ICNFLG -- Flag showing whether constraints on Y are to apply.
C ICNSTR -- Integer array of length NEQ with constraint types.
C
C The other parameters are for use internally by DDASIC.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DCOPY, NLSIC
C
C***END PROLOGUE DDASIC
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),ID(*),WT(*),PHI(NEQ,*)
DIMENSION SAVR(*),DELTA(*),E(*),YIC(*),YPIC(*),PWK(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*), ICNSTR(*)
EXTERNAL RES, JAC, PSOL, NLSIC
C
PARAMETER (LCFN=15)
PARAMETER (LMXNH=34)
C
C The following parameters are data-loaded here:
C RHCUT = factor by which H is reduced on retry of Newton solve.
C RATEMX = maximum convergence rate for which Newton iteration
C is considered converging.
C
SAVE RHCUT, RATEMX
DATA RHCUT/0.1D0/, RATEMX/0.8D0/
C
C
C-----------------------------------------------------------------------
C BLOCK 1.
C Initializations.
C JSKIP is a flag set to 1 when NIC = 2 and NH = 1, to signal that
C the initial call to the JAC routine is to be skipped then.
C Save Y and YPRIME in PHI. Initialize IDID, NH, and CJ.
C-----------------------------------------------------------------------
C
MXNH = IWM(LMXNH)
IDID = 1
NH = 1
JSKIP = 0
IF (NIC .EQ. 2) JSKIP = 1
CALL DCOPY (NEQ, Y, 1, PHI(1,1), 1)
CALL DCOPY (NEQ, YPRIME, 1, PHI(1,2), 1)
C
IF (ICOPT .EQ. 2) THEN
CJ = 0.0D0
ELSE
CJ = 1.0D0/H
ENDIF
C
C-----------------------------------------------------------------------
C BLOCK 2
C Call the nonlinear system solver to obtain
C consistent initial values for Y and YPRIME.
C-----------------------------------------------------------------------
C
200 CONTINUE
CALL NLSIC(X,Y,YPRIME,NEQ,ICOPT,ID,RES,JAC,PSOL,H,TSCALE,WT,
* JSKIP,RPAR,IPAR,SAVR,DELTA,E,YIC,YPIC,PWK,WM,IWM,CJ,UROUND,
* EPLI,SQRTN,RSQRTN,EPCONI,RATEMX,STPTOL,JFLG,ICNFLG,ICNSTR,
* IERNLS)
C
IF (IERNLS .EQ. 0) RETURN
C
C-----------------------------------------------------------------------
C BLOCK 3
C The nonlinear solver was unsuccessful. Increment NCFN.
C Return with IDID = -12 if either
C IERNLS = -1: error is considered unrecoverable,
C ICOPT = 2: we are doing initialization problem type 2, or
C NH = MXNH: the maximum number of H values has been tried.
C Otherwise (problem 1 with IERNLS .GE. 1), reduce H and try again.
C If IERNLS > 1, restore Y and YPRIME to their original values.
C-----------------------------------------------------------------------
C
IWM(LCFN) = IWM(LCFN) + 1
JSKIP = 0
C
IF (IERNLS .EQ. -1) GO TO 350
c >>>>>>>> singular Jacobian
IF (IERNLS .EQ. -2) GO TO 360
IF (ICOPT .EQ. 2) GO TO 350
IF (NH .EQ. MXNH) GO TO 350
C
NH = NH + 1
H = H*RHCUT
CJ = 1.0D0/H
C
IF (IERNLS .EQ. 1) GO TO 200
C
CALL DCOPY (NEQ, PHI(1,1), 1, Y, 1)
CALL DCOPY (NEQ, PHI(1,2), 1, YPRIME, 1)
GO TO 200
C
350 IDID = -12
RETURN
c >> singular Jacobian
360 IDID = -8
RETURN
C
C------END OF SUBROUTINE DDASIC-----------------------------------------
END
SUBROUTINE DYYPNW (NEQ, Y, YPRIME, CJ, RL, P, ICOPT, ID,
* YNEW, YPNEW)
C
C***BEGIN PROLOGUE DYYPNW
C***REFER TO DLINSK
C***DATE WRITTEN 940830 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DYYPNW calculates the new (Y,YPRIME) pair needed in the
C linesearch algorithm based on the current lambda value. It is
C called by DLINSK and DLINSD. Based on the ICOPT and ID values,
C the corresponding entry in Y or YPRIME is updated.
C
C In addition to the parameters described in the calling programs,
C the parameters represent
C
C P -- Array of length NEQ that contains the current
C approximate Newton step.
C RL -- Scalar containing the current lambda value.
C YNEW -- Array of length NEQ containing the updated Y vector.
C YPNEW -- Array of length NEQ containing the updated YPRIME
C vector.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED (NONE)
C
C***END PROLOGUE DYYPNW
C
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION Y(*), YPRIME(*), YNEW(*), YPNEW(*), ID(*), P(*)
C
IF (ICOPT .EQ. 1) THEN
DO 10 I=1,NEQ
IF(ID(I) .LT. 0) THEN
YNEW(I) = Y(I) - RL*P(I)
YPNEW(I) = YPRIME(I)
ELSE
YNEW(I) = Y(I)
YPNEW(I) = YPRIME(I) - RL*CJ*P(I)
ENDIF
10 CONTINUE
ELSE
DO 20 I = 1,NEQ
YNEW(I) = Y(I) - RL*P(I)
YPNEW(I) = YPRIME(I)
20 CONTINUE
ENDIF
RETURN
C----------------------- END OF SUBROUTINE DYYPNW ----------------------
END
SUBROUTINE DDSTP(X,Y,YPRIME,NEQ,RES,JAC,PSOL,H,WT,VT,
* JSTART,IDID,RPAR,IPAR,PHI,SAVR,DELTA,E,WM,IWM,
* ALPHA,BETA,GAMMA,PSI,SIGMA,CJ,CJOLD,HOLD,S,HMIN,UROUND,
* EPLI,SQRTN,RSQRTN,EPCON,IPHASE,JCALC,JFLG,K,KOLD,NS,NONNEG,
* NTYPE,NLS)
C
C***BEGIN PROLOGUE DDSTP2
C***REFER TO DDASPK
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940909 (YYMMDD) (Reset PSI(1), PHI(*,2) at 690)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DDSTP solves a system of differential/algebraic equations of
C the form G(X,Y,YPRIME) = 0, for one step (normally from X to X+H).
C
C The methods used are modified divided difference, fixed leading
C coefficient forms of backward differentiation formulas.
C The code adjusts the stepsize and order to control the local error
C per step.
C
C
C The parameters represent
C X -- Independent variable.
C Y -- Solution vector at X.
C YPRIME -- Derivative of solution vector
C after successful step.
C NEQ -- Number of equations to be integrated.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C JAC -- External user-supplied routine to update
C Jacobian or preconditioner information in the
C nonlinear solver. See JAC description in DDASPK
C prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C (This is optional). See PSOL in DDASPK prologue.
C H -- Appropriate step size for next step.
C Normally determined by the code.
C WT -- Vector of weights for error criterion used in Newton test.
C VT -- Masked vector of weights used in error test.
C JSTART -- Integer variable set 0 for
C first step, 1 otherwise.
C IDID -- Completion code returned from the nonlinear solver.
C See IDID description in DDASPK prologue.
C RPAR,IPAR -- Real and integer parameter arrays that
C are used for communication between the
C calling program and external user routines.
C They are not altered by DNSK
C PHI -- Array of divided differences used by
C DDSTP. The length is NEQ*(K+1), where
C K is the maximum order.
C SAVR -- Work vector for DDSTP of length NEQ.
C DELTA,E -- Work vectors for DDSTP of length NEQ.
C WM,IWM -- Real and integer arrays storing
C information required by the linear solver.
C
C The other parameters are information
C which is needed internally by DDSTP to
C continue from step to step.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C NLS, DDWNRM, DDATRP
C
C***END PROLOGUE DDSTP
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*),VT(*)
DIMENSION PHI(NEQ,*),SAVR(*),DELTA(*),E(*)
DIMENSION WM(*),IWM(*)
DIMENSION PSI(*),ALPHA(*),BETA(*),GAMMA(*),SIGMA(*)
DIMENSION RPAR(*),IPAR(*)
EXTERNAL RES, JAC, PSOL, NLS
C
PARAMETER (LMXORD=3)
PARAMETER (LNST=11, LETF=14, LCFN=15)
C
C
C-----------------------------------------------------------------------
C BLOCK 1.
C Initialize. On the first call, set
C the order to 1 and initialize
C other variables.
C-----------------------------------------------------------------------
C
C Initializations for all calls
C
XOLD=X
NCF=0
NEF=0
c //cold or hot start
IF(JSTART .NE. 0) GO TO 120
C
C If this is the first step, perform
C other initializations
C
K=1
KOLD=0
HOLD=0.0D0
PSI(1)=H
CJ = 1.D0/H
IPHASE = 0
NS=0
120 CONTINUE
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 2
C Compute coefficients of formulas for
C this step.
C-----------------------------------------------------------------------
200 CONTINUE
KP1=K+1
KP2=K+2
KM1=K-1
IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0
NS=MIN0(NS+1,KOLD+2)
NSP1=NS+1
IF(KP1 .LT. NS)GO TO 230
C
BETA(1)=1.0D0
ALPHA(1)=1.0D0
TEMP1=H
GAMMA(1)=0.0D0
SIGMA(1)=1.0D0
DO 210 I=2,KP1
TEMP2=PSI(I-1)
PSI(I-1)=TEMP1
BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2
TEMP1=TEMP2+H
ALPHA(I)=H/TEMP1
SIGMA(I)=(I-1)*SIGMA(I-1)*ALPHA(I)
GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H
210 CONTINUE
PSI(KP1)=TEMP1
230 CONTINUE
C
C Compute ALPHAS, ALPHA0
C
ALPHAS = 0.0D0
ALPHA0 = 0.0D0
DO 240 I = 1,K
ALPHAS = ALPHAS - 1.0D0/I
ALPHA0 = ALPHA0 - ALPHA(I)
240 CONTINUE
C
C Compute leading coefficient CJ
C
CJLAST = CJ
CJ = -ALPHAS/H
C
C Compute variable stepsize error coefficient CK
C
CK = ABS(ALPHA(KP1) + ALPHAS - ALPHA0)
CK = MAX(CK,ALPHA(KP1))
C
C Change PHI to PHI STAR
C
IF(KP1 .LT. NSP1) GO TO 280
DO 270 J=NSP1,KP1
DO 260 I=1,NEQ
260 PHI(I,J)=BETA(J)*PHI(I,J)
270 CONTINUE
280 CONTINUE
C
C Update time
C
X=X+H
C
C Initialize IDID to 1
IDID = 1
C-----------------------------------------------------------------------
C BLOCK 3
C Call the nonlinear system solver to obtain the solution and
C derivative.
C-----------------------------------------------------------------------
C
CALL NLS(X,Y,YPRIME,NEQ,
* RES,JAC,PSOL,H,WT,JSTART,IDID,RPAR,IPAR,PHI,GAMMA,
* SAVR,DELTA,E,WM,IWM,CJ,CJOLD,CJLAST,S,
* UROUND,EPLI,SQRTN,RSQRTN,EPCON,JCALC,JFLG,KP1,
* NONNEG,NTYPE,IERNLS)
C
IF(IERNLS .NE. 0)GO TO 600
C-----------------------------------------------------------------------
C BLOCK 4
C Estimate the errors at orders K,K-1,K-2
C as if constant stepsize was used. Estimate
C the local error at order K and test
C whether the current step is successful.
C-----------------------------------------------------------------------
C
C Estimate errors at orders K,K-1,K-2
C
ENORM = DDWNRM(NEQ,E,VT,RPAR,IPAR)
c
ERK = SIGMA(K+1)*ENORM
TERK = (K+1)*ERK
EST = ERK
KNEW=K
IF(K .EQ. 1)GO TO 430
DO 405 I = 1,NEQ
405 DELTA(I) = PHI(I,KP1) + E(I)
ERKM1=SIGMA(K)*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
TERKM1 = K*ERKM1
IF(K .GT. 2)GO TO 410
IF(TERKM1 .LE. 0.5*TERK)GO TO 420
GO TO 430
410 CONTINUE
DO 415 I = 1,NEQ
415 DELTA(I) = PHI(I,K) + DELTA(I)
ERKM2=SIGMA(K-1)*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
TERKM2 = (K-1)*ERKM2
IF(MAX(TERKM1,TERKM2).GT.TERK)GO TO 430
C
C Lower the order
C
420 CONTINUE
KNEW=K-1
EST = ERKM1
C
C
C Calculate the local error for the current step
C to see if the step was successful
C
430 CONTINUE
ERR = CK * ENORM
IF(ERR .GT. 1.0D0)GO TO 600
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 5
C The step is successful. Determine
C the best order and stepsize for
C the next step. Update the differences
C for the next step.
C-----------------------------------------------------------------------
IDID=1
IWM(LNST)=IWM(LNST)+1
KDIFF=K-KOLD
KOLD=K
HOLD=H
C
C
C Estimate the error at order K+1 unless
C already decided to lower order, or
C already using maximum order, or
C stepsize not constant, or
C order raised in previous step
C
IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1
IF(IPHASE .EQ. 0)GO TO 545
IF(KNEW.EQ.KM1)GO TO 540
IF(K.EQ.IWM(LMXORD)) GO TO 550
IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550
DO 510 I=1,NEQ
510 DELTA(I)=E(I)-PHI(I,KP2)
ERKP1 = (1.0D0/(K+2))*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
TERKP1 = (K+2)*ERKP1
IF(K.GT.1)GO TO 520
IF(TERKP1.GE.0.5D0*TERK)GO TO 550
GO TO 530
520 IF(TERKM1.LE.MIN(TERK,TERKP1))GO TO 540
IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550
C
C Raise order
C
530 K=KP1
EST = ERKP1
GO TO 550
C
C Lower order
C
540 K=KM1
EST = ERKM1
GO TO 550
C
C If IPHASE = 0, increase order by one and multiply stepsize by
C factor two
C
545 K = KP1
HNEW = H*2.0D0
H = HNEW
GO TO 575
C
C
C Determine the appropriate stepsize for
C the next step.
C
550 HNEW=H
TEMP2=K+1
R=(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
IF(R .LT. 2.0D0) GO TO 555
HNEW = 2.0D0*H
GO TO 560
555 IF(R .GT. 1.0D0) GO TO 560
R = MAX(0.5D0,MIN(0.9D0,R))
HNEW = H*R
560 H=HNEW
C
C
C Update differences for next step
C
575 CONTINUE
IF(KOLD.EQ.IWM(LMXORD))GO TO 585
DO 580 I=1,NEQ
580 PHI(I,KP2)=E(I)
585 CONTINUE
DO 590 I=1,NEQ
590 PHI(I,KP1)=PHI(I,KP1)+E(I)
DO 595 J1=2,KP1
J=KP1-J1+1
DO 595 I=1,NEQ
595 PHI(I,J)=PHI(I,J)+PHI(I,J+1)
JSTART = 1
RETURN
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 6
C The step is unsuccessful. Restore X,PSI,PHI
C Determine appropriate stepsize for
C continuing the integration, or exit with
C an error flag if there have been many
C failures.
C-----------------------------------------------------------------------
600 IPHASE = 1
C
C Restore X,PHI,PSI
C
X=XOLD
IF(KP1.LT.NSP1)GO TO 630
DO 620 J=NSP1,KP1
TEMP1=1.0D0/BETA(J)
DO 610 I=1,NEQ
610 PHI(I,J)=TEMP1*PHI(I,J)
620 CONTINUE
630 CONTINUE
DO 640 I=2,KP1
640 PSI(I-1)=PSI(I)-H
C
C
C Test whether failure is due to nonlinear solver
C or error test
C
IF(IERNLS .EQ. 0)GO TO 660
IWM(LCFN)=IWM(LCFN)+1
C
C
C The nonlinear solver failed to converge.
C Determine the cause of the failure and take appropriate action.
C If IERNLS .LT. 0, then return. Otherwise, reduce the stepsize
C and try again, unless too many failures have occurred.
C
IF (IERNLS .LT. 0) GO TO 675
NCF = NCF + 1
R = 0.25D0
H = H*R
c ------------------ HMIN chnage---------------------
c IF (NCF .LT. 10 .AND. ABS(H) .GE. HMIN) GO TO 690
IF ((NCF .LT. 10 ) .and. (x+h .ne. x)) GO TO 690
c ------------------ HMIN chnage---------------------
IF (IDID .EQ. 1) IDID = -7
IF (NEF .GE. 3) IDID = -9
GO TO 675
C
C
C The nonlinear solver converged, and the cause
C of the failure was the error estimate
C exceeding the tolerance.
C
660 NEF=NEF+1
IWM(LETF)=IWM(LETF)+1
IF (NEF .GT. 1) GO TO 665
C
C On first error test failure, keep current order or lower
C order by one. Compute new stepsize based on differences
C of the solution.
C
K = KNEW
TEMP2 = K + 1
R = 0.90D0*(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
R = MAX(0.25D0,MIN(0.9D0,R))
H = H*R
c ------------------ HMIN chnage---------------------
c IF (ABS(H) .GE. HMIN) GO TO 690
if (X+H .GT. X) GO TO 690
c ------------------ HMIN chnage---------------------
IDID = -6
GO TO 675
C
C On second error test failure, use the current order or
C decrease order by one. Reduce the stepsize by a factor of
C one quarter.
C
665 IF (NEF .GT. 2) GO TO 670
K = KNEW
R = 0.25D0
H = R*H
c ------------------ HMIN chnage---------------------
c IF (ABS(H) .GE. HMIN) GO TO 690
if (X+H .GT. X) GO TO 690
c ------------------ HMIN chnage---------------------
IDID = -6
GO TO 675
C
C On third and subsequent error test failures, set the order to
C one, and reduce the stepsize by a factor of one quarter.
C
670 K = 1
R = 0.25D0
H = R*H
c ------------------ HMIN chnage---------------------
c IF (ABS(H) .GE. HMIN) GO TO 690
if (X+H .GT. X) GO TO 690
c ------------------ HMIN chnage---------------------
IDID = -6
GO TO 675
C
C
C
C
C For all crashes, restore Y to its last value,
C interpolate to find YPRIME at last X, and return.
C
C Before returning, verify that the user has not set
C IDID to a nonnegative value. If the user has set IDID
C to a nonnegative value, then reset IDID to be -7, indicating
C a failure in the nonlinear system solver.
C
675 CONTINUE
CALL DDATRP1(X,X,Y,YPRIME,NEQ,K,PHI,PSI)
JSTART = 1
IF (IDID .GE. 0) IDID = -7
RETURN
C
C
C Go back and try this step again.
C If this is the first step, reset PSI(1) and rescale PHI(*,2).
C
690 IF (KOLD .EQ. 0) THEN
PSI(1) = H
DO 695 I = 1,NEQ
695 PHI(I,2) = R*PHI(I,2)
ENDIF
GO TO 200
C
C------END OF SUBROUTINE DDSTP------------------------------------------
END
SUBROUTINE DCNSTR (NEQ, Y, YNEW, ICNSTR, TAU, RLX, IRET, IVAR)
C
C***BEGIN PROLOGUE DCNSTR
C***DATE WRITTEN 950808 (YYMMDD)
C***REVISION DATE 950814 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This subroutine checks for constraint violations in the proposed
C new approximate solution YNEW.
C If a constraint violation occurs, then a new step length, TAU,
C is calculated, and this value is to be given to the linesearch routine
C to calculate a new approximate solution YNEW.
C
C On entry:
C
C NEQ -- size of the nonlinear system, and the length of arrays
C Y, YNEW and ICNSTR.
C
C Y -- real array containing the current approximate y.
C
C YNEW -- real array containing the new approximate y.
C
C ICNSTR -- INTEGER array of length NEQ containing flags indicating
C which entries in YNEW are to be constrained.
C if ICNSTR(I) = 2, then YNEW(I) must be .GT. 0,
C if ICNSTR(I) = 1, then YNEW(I) must be .GE. 0,
C if ICNSTR(I) = -1, then YNEW(I) must be .LE. 0, while
C if ICNSTR(I) = -2, then YNEW(I) must be .LT. 0, while
C if ICNSTR(I) = 0, then YNEW(I) is not constrained.
C
C RLX -- real scalar restricting update, if ICNSTR(I) = 2 or -2,
C to ABS( (YNEW-Y)/Y ) < FAC2*RLX in component I.
C
C TAU -- the current size of the step length for the linesearch.
C
C On return
C
C TAU -- the adjusted size of the step length if a constraint
C violation occurred (otherwise, it is unchanged). it is
C the step length to give to the linesearch routine.
C
C IRET -- output flag.
C IRET=0 means that YNEW satisfied all constraints.
C IRET=1 means that YNEW failed to satisfy all the
C constraints, and a new linesearch step
C must be computed.
C
C IVAR -- index of variable causing constraint to be violated.
C
C-----------------------------------------------------------------------
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(NEQ), YNEW(NEQ), ICNSTR(NEQ)
SAVE FAC, FAC2, ZERO
DATA FAC /0.6D0/, FAC2 /0.9D0/, ZERO/0.0D0/
C-----------------------------------------------------------------------
C Check constraints for proposed new step YNEW. If a constraint has
C been violated, then calculate a new step length, TAU, to be
C used in the linesearch routine.
C-----------------------------------------------------------------------
IRET = 0
RDYMX = ZERO
IVAR = 0
DO 100 I = 1,NEQ
C
IF (ICNSTR(I) .EQ. 2) THEN
RDY = ABS( (YNEW(I)-Y(I))/Y(I) )
IF (RDY .GT. RDYMX) THEN
RDYMX = RDY
IVAR = I
ENDIF
IF (YNEW(I) .LE. ZERO) THEN
TAU = FAC*TAU
IVAR = I
IRET = 1
RETURN
ENDIF
C
ELSEIF (ICNSTR(I) .EQ. 1) THEN
IF (YNEW(I) .LT. ZERO) THEN
TAU = FAC*TAU
IVAR = I
IRET = 1
RETURN
ENDIF
C
ELSEIF (ICNSTR(I) .EQ. -1) THEN
IF (YNEW(I) .GT. ZERO) THEN
TAU = FAC*TAU
IVAR = I
IRET = 1
RETURN
ENDIF
C
ELSEIF (ICNSTR(I) .EQ. -2) THEN
RDY = ABS( (YNEW(I)-Y(I))/Y(I) )
IF (RDY .GT. RDYMX) THEN
RDYMX = RDY
IVAR = I
ENDIF
IF (YNEW(I) .GE. ZERO) THEN
TAU = FAC*TAU
IVAR = I
IRET = 1
RETURN
ENDIF
C
ENDIF
100 CONTINUE
IF(RDYMX .GE. RLX) THEN
TAU = FAC2*TAU*RLX/RDYMX
IRET = 1
ENDIF
C
RETURN
C----------------------- END OF SUBROUTINE DCNSTR ----------------------
END
SUBROUTINE DCNST0 (NEQ, Y, ICNSTR, IRET)
C
C***BEGIN PROLOGUE DCNST0
C***DATE WRITTEN 950808 (YYMMDD)
C***REVISION DATE 950808 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This subroutine checks for constraint violations in the initial
C approximate solution u.
C
C On entry
C
C NEQ -- size of the nonlinear system, and the length of arrays
C Y and ICNSTR.
C
C Y -- real array containing the initial approximate root.
C
C ICNSTR -- INTEGER array of length NEQ containing flags indicating
C which entries in Y are to be constrained.
C if ICNSTR(I) = 2, then Y(I) must be .GT. 0,
C if ICNSTR(I) = 1, then Y(I) must be .GE. 0,
C if ICNSTR(I) = -1, then Y(I) must be .LE. 0, while
C if ICNSTR(I) = -2, then Y(I) must be .LT. 0, while
C if ICNSTR(I) = 0, then Y(I) is not constrained.
C
C On return
C
C IRET -- output flag.
C IRET=0 means that u satisfied all constraints.
C IRET.NE.0 means that Y(IRET) failed to satisfy its
C constraint.
C
C-----------------------------------------------------------------------
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(NEQ), ICNSTR(NEQ)
SAVE ZERO
DATA ZERO/0.D0/
C-----------------------------------------------------------------------
C Check constraints for initial Y. If a constraint has been violated,
C set IRET = I to signal an error return to calling routine.
C-----------------------------------------------------------------------
IRET = 0
DO 100 I = 1,NEQ
IF (ICNSTR(I) .EQ. 2) THEN
IF (Y(I) .LE. ZERO) THEN
IRET = I
RETURN
ENDIF
ELSEIF (ICNSTR(I) .EQ. 1) THEN
IF (Y(I) .LT. ZERO) THEN
IRET = I
RETURN
ENDIF
ELSEIF (ICNSTR(I) .EQ. -1) THEN
IF (Y(I) .GT. ZERO) THEN
IRET = I
RETURN
ENDIF
ELSEIF (ICNSTR(I) .EQ. -2) THEN
IF (Y(I) .GE. ZERO) THEN
IRET = I
RETURN
ENDIF
ENDIF
100 CONTINUE
RETURN
C----------------------- END OF SUBROUTINE DCNST0 ----------------------
END
SUBROUTINE DDAWTS1(NEQ,IWT,RTOL,ATOL,Y,WT,RPAR,IPAR)
C
C***BEGIN PROLOGUE DDAWTS
C***REFER TO DDASPK
C***ROUTINES CALLED (NONE)
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***END PROLOGUE DDAWTS
C-----------------------------------------------------------------------
C This subroutine sets the error weight vector,
C WT, according to WT(I)=RTOL(I)*ABS(Y(I))+ATOL(I),
C I = 1 to NEQ.
C RTOL and ATOL are scalars if IWT = 0,
C and vectors if IWT = 1.
C-----------------------------------------------------------------------
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION RTOL(*),ATOL(*),Y(*),WT(*)
DIMENSION RPAR(*),IPAR(*)
RTOLI=RTOL(1)
ATOLI=ATOL(1)
DO 20 I=1,NEQ
IF (IWT .EQ.0) GO TO 10
RTOLI=RTOL(I)
ATOLI=ATOL(I)
10 WT(I)=RTOLI*ABS(Y(I))+ATOLI
20 CONTINUE
RETURN
C
C------END OF SUBROUTINE DDAWTS-----------------------------------------
END
SUBROUTINE DINVWT(NEQ,WT,IER)
C
C***BEGIN PROLOGUE DINVWT
C***REFER TO DDASPK
C***ROUTINES CALLED (NONE)
C***DATE WRITTEN 950125 (YYMMDD)
C***END PROLOGUE DINVWT
C-----------------------------------------------------------------------
C This subroutine checks the error weight vector WT, of length NEQ,
C for components that are .le. 0, and if none are found, it
C inverts the WT(I) in place. This replaces division operations
C with multiplications in all norm evaluations.
C IER is returned as 0 if all WT(I) were found positive,
C and the first I with WT(I) .le. 0.0 otherwise.
C-----------------------------------------------------------------------
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION WT(*)
C
DO 10 I = 1,NEQ
IF (WT(I) .LE. 0.0D0) GO TO 30
10 CONTINUE
DO 20 I = 1,NEQ
20 WT(I) = 1.0D0/WT(I)
IER = 0
RETURN
C
30 IER = I
RETURN
C
C------END OF SUBROUTINE DINVWT-----------------------------------------
END
SUBROUTINE DDATRP1(X,XOUT,YOUT,YPOUT,NEQ,KOLD,PHI,PSI)
C
C***BEGIN PROLOGUE DDATRP
C***REFER TO DDASPK
C***ROUTINES CALLED (NONE)
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***END PROLOGUE DDATRP
C
C-----------------------------------------------------------------------
C The methods in subroutine DDSTP use polynomials
C to approximate the solution. DDATRP approximates the
C solution and its derivative at time XOUT by evaluating
C one of these polynomials, and its derivative, there.
C Information defining this polynomial is passed from
C DDSTP, so DDATRP cannot be used alone.
C
C The parameters are
C
C X The current time in the integration.
C XOUT The time at which the solution is desired.
C YOUT The interpolated approximation to Y at XOUT.
C (This is output.)
C YPOUT The interpolated approximation to YPRIME at XOUT.
C (This is output.)
C NEQ Number of equations.
C KOLD Order used on last successful step.
C PHI Array of scaled divided differences of Y.
C PSI Array of past stepsize history.
C-----------------------------------------------------------------------
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION YOUT(*),YPOUT(*)
DIMENSION PHI(NEQ,*),PSI(*)
KOLDP1=KOLD+1
TEMP1=XOUT-X
DO 10 I=1,NEQ
YOUT(I)=PHI(I,1)
10 YPOUT(I)=0.0D0
C=1.0D0
D=0.0D0
GAMMA=TEMP1/PSI(1)
DO 30 J=2,KOLDP1
D=D*GAMMA+C/PSI(J-1)
C=C*GAMMA
GAMMA=(TEMP1+PSI(J-1))/PSI(J)
DO 20 I=1,NEQ
YOUT(I)=YOUT(I)+C*PHI(I,J)
20 YPOUT(I)=YPOUT(I)+D*PHI(I,J)
30 CONTINUE
RETURN
C
C------END OF SUBROUTINE DDATRP-----------------------------------------
END
DOUBLE PRECISION FUNCTION DDWNRM(NEQ,V,RWT,RPAR,IPAR)
C
C***BEGIN PROLOGUE DDWNRM
C***ROUTINES CALLED (NONE)
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***END PROLOGUE DDWNRM
C-----------------------------------------------------------------------
C This function routine computes the weighted
C root-mean-square norm of the vector of length
C NEQ contained in the array V, with reciprocal weights
C contained in the array RWT of length NEQ.
C DDWNRM=SQRT((1/NEQ)*SUM(V(I)*RWT(I))**2)
C-----------------------------------------------------------------------
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION V(*),RWT(*)
DIMENSION RPAR(*),IPAR(*)
DDWNRM = 0.0D0
VMAX = 0.0D0
DO 10 I = 1,NEQ
IF(ABS(V(I)*RWT(I)) .GT. VMAX) VMAX = ABS(V(I)*RWT(I))
10 CONTINUE
IF(VMAX .LE. 0.0D0) GO TO 30
SUM = 0.0D0
DO 20 I = 1,NEQ
20 SUM = SUM + ((V(I)*RWT(I))/VMAX)**2
DDWNRM = VMAX*SQRT(SUM/NEQ)
30 CONTINUE
RETURN
C
C------END OF FUNCTION DDWNRM-------------------------------------------
END
SUBROUTINE DDASID(X,Y,YPRIME,NEQ,ICOPT,ID,RES,JACD,PDUM,H,TSCALE,
* WT,JSDUM,RPAR,IPAR,DUMSVR,DELTA,R,YIC,YPIC,DUMPWK,WM,IWM,CJ,
* UROUND,DUME,DUMS,DUMR,EPCON,RATEMX,STPTOL,JFDUM,
* ICNFLG,ICNSTR,IERNLS)
C
C***BEGIN PROLOGUE DDASID
C***REFER TO DDASPK
C***DATE WRITTEN 940701 (YYMMDD)
C***REVISION DATE 950808 (YYMMDD)
C***REVISION DATE 951110 Removed unreachable block 390.
C***REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C
C DDASID solves a nonlinear system of algebraic equations of the
C form G(X,Y,YPRIME) = 0 for the unknown parts of Y and YPRIME in
C the initial conditions.
C
C The method used is a modified Newton scheme.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C ICOPT -- Initial condition option chosen (1 or 2).
C ID -- Array of dimension NEQ, which must be initialized
C if ICOPT = 1. See DDASIC.
C RES -- External user-supplied subroutine to evaluate the
C residual. See RES description in DDASPK prologue.
C JACD -- External user-supplied routine to evaluate the
C Jacobian. See JAC description for the case
C INFO(12) = 0 in the DDASPK prologue.
C PDUM -- Dummy argument.
C H -- Scaling factor for this initial condition calc.
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C WT -- Vector of weights for error criterion.
C JSDUM -- Dummy argument.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C DUMSVR -- Dummy argument.
C DELTA -- Work vector for NLS of length NEQ.
C R -- Work vector for NLS of length NEQ.
C YIC,YPIC -- Work vectors for NLS, each of length NEQ.
C DUMPWK -- Dummy argument.
C WM,IWM -- Real and integer arrays storing matrix information
C such as the matrix of partial derivatives,
C permutation vector, and various other information.
C CJ -- Matrix parameter = 1/H (ICOPT = 1) or 0 (ICOPT = 2).
C UROUND -- Unit roundoff.
C DUME -- Dummy argument.
C DUMS -- Dummy argument.
C DUMR -- Dummy argument.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C RATEMX -- Maximum convergence rate for which Newton iteration
C is considered converging.
C JFDUM -- Dummy argument.
C STPTOL -- Tolerance used in calculating the minimum lambda
C value allowed.
C ICNFLG -- Integer scalar. If nonzero, then constraint
C violations in the proposed new approximate solution
C will be checked for, and the maximum step length
C will be adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C IERNLS -- Error flag for nonlinear solver.
C 0 ==> nonlinear solver converged.
C 1,2 ==> recoverable error inside nonlinear solver.
C 1 => retry with current Y, YPRIME
C 2 => retry with original Y, YPRIME
C -1 ==> unrecoverable error in nonlinear solver.
C -2 ==> Singular Jacobian
C All variables with "DUM" in their names are dummy variables
C which are not used in this routine.
C
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C RES, DMATD, DNSID
C
C***END PROLOGUE DDASID
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),ID(*),WT(*),ICNSTR(*)
DIMENSION DELTA(*),R(*),YIC(*),YPIC(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
EXTERNAL RES, JACD
C
PARAMETER (LNRE=12, LNJE=13, LMXNIT=32, LMXNJ=33)
C
C
C Perform initializations.
C
MXNIT = IWM(LMXNIT)
MXNJ = IWM(LMXNJ)
IERNLS = 0
NJ = 0
C
C Call RES to initialize DELTA.
C
IRES = 0
IWM(LNRE) = IWM(LNRE) + 1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 370
C Looping point for updating the Jacobian.
C
300 CONTINUE
C
C Initialize all error flags to zero.
C
IERJ = 0
IRES = 0
IERNEW = 0
C
C Reevaluate the iteration matrix, J = dG/dY + CJ*dG/dYPRIME,
C where G(X,Y,YPRIME) = 0.
C
NJ = NJ + 1
IWM(LNJE)=IWM(LNJE)+1
CALL DMATD(NEQ,X,Y,YPRIME,DELTA,CJ,H,IERJ,WT,R,
* WM,IWM,RES,IRES,UROUND,JACD,RPAR,IPAR)
c assigning two different error message for singular-Jacobian and
c internal error
IF (IRES .LT. 0) GO TO 370
IF (IERJ .NE. 0) GO TO 375
C Call the nonlinear Newton solver for up to MXNIT iterations.
CALL DNSID(X,Y,YPRIME,NEQ,ICOPT,ID,RES,WT,RPAR,IPAR,DELTA,R,
* YIC,YPIC,WM,IWM,CJ,TSCALE,EPCON,RATEMX,MXNIT,STPTOL,
* ICNFLG,ICNSTR,IERNEW)
IF (IERNEW .EQ. 1 .AND. NJ .LT. MXNJ) THEN
C
C MXNIT iterations were done, the convergence rate is < 1,
C and the number of Jacobian evaluations is less than MXNJ.
C Call RES, reevaluate the Jacobian, and try again.
C
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 370
GO TO 300
ENDIF
IF (IERNEW .NE. 0) GO TO 380
RETURN
C
C
C Unsuccessful exits from nonlinear solver.
C Compute IERNLS accordingly.
C
C unrecoverable error in nonlinear solver.
370 IERNLS = -1
RETURN
c >> singular Jacobian
375 IERNLS = -2
RETURN
C
380 IERNLS = MIN(IERNEW,2)
RETURN
C
C------END OF SUBROUTINE DDASID-----------------------------------------
END
SUBROUTINE DNSID(X,Y,YPRIME,NEQ,ICOPT,ID,RES,WT,RPAR,IPAR,
* DELTA,R,YIC,YPIC,WM,IWM,CJ,TSCALE,EPCON,RATEMX,MAXIT,STPTOL,
* ICNFLG,ICNSTR,IERNEW)
C
C***BEGIN PROLOGUE DNSID
C***REFER TO DDASPK
C***DATE WRITTEN 940701 (YYMMDD)
C***REVISION DATE 950713 (YYMMDD)
C***REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNSID solves a nonlinear system of algebraic equations of the
C form G(X,Y,YPRIME) = 0 for the unknown parts of Y and YPRIME
C in the initial conditions.
C
C The method used is a modified Newton scheme.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C ICOPT -- Initial condition option chosen (1 or 2).
C ID -- Array of dimension NEQ, which must be initialized
C if ICOPT = 1. See DDASIC.
C RES -- External user-supplied subroutine to evaluate the
C residual. See RES description in DDASPK prologue.
C WT -- Vector of weights for error criterion.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C DELTA -- Residual vector on entry, and work vector of
C length NEQ for DNSID.
C WM,IWM -- Real and integer arrays storing matrix information
C such as the matrix of partial derivatives,
C permutation vector, and various other information.
C CJ -- Matrix parameter = 1/H (ICOPT = 1) or 0 (ICOPT = 2).
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C R -- Array of length NEQ used as workspace by the
C linesearch routine DLINSD.
C YIC,YPIC -- Work vectors for DLINSD, each of length NEQ.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C RATEMX -- Maximum convergence rate for which Newton iteration
C is considered converging.
C MAXIT -- Maximum allowed number of Newton iterations.
C STPTOL -- Tolerance used in calculating the minimum lambda
C value allowed.
C ICNFLG -- Integer scalar. If nonzero, then constraint
C violations in the proposed new approximate solution
C will be checked for, and the maximum step length
C will be adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C IERNEW -- Error flag for Newton iteration.
C 0 ==> Newton iteration converged.
C 1 ==> failed to converge, but RATE .le. RATEMX.
C 2 ==> failed to converge, RATE .gt. RATEMX.
C 3 ==> other recoverable error (IRES = -1, or
C linesearch failed).
C -1 ==> unrecoverable error (IRES = -2).
C
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C DSLVD, DDWNRM, DLINSD, DCOPY
C
C***END PROLOGUE DNSID
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*),R(*)
DIMENSION ID(*),DELTA(*), YIC(*), YPIC(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
DIMENSION ICNSTR(*)
EXTERNAL RES
C
PARAMETER (LNNI=19, LLSOFF=35)
C
C
C Initializations. M is the Newton iteration counter.
C
LSOFF = IWM(LLSOFF)
M = 0
RATE = 1.0D0
RLX = 0.4D0
C
C Compute a new step vector DELTA by back-substitution.
C
CALL DSLVD (NEQ, DELTA, WM, IWM)
C
C Get norm of DELTA. Return now if norm(DELTA) .le. EPCON.
C
DELNRM = DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
FNRM = DELNRM
IF (TSCALE .GT. 0.0D0) FNRM = FNRM*TSCALE*ABS(CJ)
IF (FNRM .LE. EPCON) RETURN
C
C Newton iteration loop.
C
300 CONTINUE
IWM(LNNI) = IWM(LNNI) + 1
C
C Call linesearch routine for global strategy and set RATE
C
OLDFNM = FNRM
C
CALL DLINSD (NEQ, Y, X, YPRIME, CJ, TSCALE, DELTA, DELNRM, WT,
* LSOFF, STPTOL, IRET, RES, IRES, WM, IWM, FNRM, ICOPT,
* ID, R, YIC, YPIC, ICNFLG, ICNSTR, RLX, RPAR, IPAR)
C
RATE = FNRM/OLDFNM
C Check for error condition from linesearch.
IF (IRET .NE. 0) GO TO 390
C
C Test for convergence of the iteration, and return or loop.
C ------------------------------------------
IERNEW = 1
RETURN
C ------------------------------------------
c here epcon=0.33
IF (FNRM .LE. EPCON) RETURN
C
C The iteration has not yet converged. Update M.
C Test whether the maximum number of iterations have been tried.
C
M = M + 1
IF (M .GE. MAXIT) GO TO 380
C
C Copy the residual to DELTA and its norm to DELNRM, and loop for
C another iteration.
C
CALL DCOPY (NEQ, R, 1, DELTA, 1)
DELNRM = FNRM
GO TO 300
C
C The maximum number of iterations was done. Set IERNEW and return.
C
c here ratemx =0.8
380 IF (RATE .LE. RATEMX) THEN
IERNEW = 1
ELSE
IERNEW = 2
ENDIF
RETURN
C
390 IF (IRES .LE. -2) THEN
IERNEW = -1
ELSE
IERNEW = 3
ENDIF
RETURN
C
C
C------END OF SUBROUTINE DNSID------------------------------------------
END
SUBROUTINE DLINSD (NEQ, Y, T, YPRIME, CJ, TSCALE, P, PNRM, WT,
* LSOFF, STPTOL, IRET, RES, IRES, WM, IWM,
* FNRM, ICOPT, ID, R, YNEW, YPNEW, ICNFLG,
* ICNSTR, RLX, RPAR, IPAR)
C
C***BEGIN PROLOGUE DLINSD
C***REFER TO DNSID
C***DATE WRITTEN 941025 (YYMMDD)
C***REVISION DATE 941215 (YYMMDD)
C***REVISION DATE 960129 Moved line RL = ONE to top block.
C***REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DLINSD uses a linesearch algorithm to calculate a new (Y,YPRIME)
C pair (YNEW,YPNEW) such that
C
C f(YNEW,YPNEW) .le. (1 - 2*ALPHA*RL)*f(Y,YPRIME) ,
C
C where 0 < RL <= 1. Here, f(y,y') is defined as
C
C f(y,y') = (1/2)*norm( (J-inverse)*G(t,y,y') )**2 ,
C
C where norm() is the weighted RMS vector norm, G is the DAE
C system residual function, and J is the system iteration matrix
C (Jacobian).
C
C In addition to the parameters defined elsewhere, we have
C
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C P -- Approximate Newton step used in backtracking.
C PNRM -- Weighted RMS norm of P.
C LSOFF -- Flag showing whether the linesearch algorithm is
C to be invoked. 0 means do the linesearch, and
C 1 means turn off linesearch.
C STPTOL -- Tolerance used in calculating the minimum lambda
C value allowed.
C ICNFLG -- Integer scalar. If nonzero, then constraint violations
C in the proposed new approximate solution will be
C checked for, and the maximum step length will be
C adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C RLX -- Real scalar restricting update size in DCNSTR.
C YNEW -- Array of length NEQ used to hold the new Y in
C performing the linesearch.
C YPNEW -- Array of length NEQ used to hold the new YPRIME in
C performing the linesearch.
C Y -- Array of length NEQ containing the new Y (i.e.,=YNEW).
C YPRIME -- Array of length NEQ containing the new YPRIME
C (i.e.,=YPNEW).
C FNRM -- Real scalar containing SQRT(2*f(Y,YPRIME)) for the
C current (Y,YPRIME) on input and output.
C R -- Work array of length NEQ, containing the scaled
C residual (J-inverse)*G(t,y,y') on return.
C IRET -- Return flag.
C IRET=0 means that a satisfactory (Y,YPRIME) was found.
C IRET=1 means that the routine failed to find a new
C (Y,YPRIME) that was sufficiently distinct from
C the current (Y,YPRIME) pair.
C IRET=2 means IRES .ne. 0 from RES.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C DFNRMD, DYYPNW, DCNSTR, DCOPY, XERRWD
C
C***END PROLOGUE DLINSD
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
EXTERNAL RES
DIMENSION Y(*), YPRIME(*), WT(*), R(*), ID(*)
DIMENSION WM(*), IWM(*)
DIMENSION YNEW(*), YPNEW(*), P(*), ICNSTR(*)
DIMENSION RPAR(*), IPAR(*)
CHARACTER MSG*80
C
PARAMETER (LNRE=12, LKPRIN=31)
C
SAVE ALPHA, ONE, TWO
DATA ALPHA/1.0D-4/, ONE/1.0D0/, TWO/2.0D0/
C
KPRIN=IWM(LKPRIN)
C
F1NRM = (FNRM*FNRM)/TWO
RATIO = ONE
IF (KPRIN .GE. 2) THEN
MSG = '------ IN ROUTINE DLINSD-- PNRM = (R1)'
CALL XERRWD(MSG, 38, 901, 0, 0, 0, 0, 1, PNRM, 0.0D0)
ENDIF
TAU = PNRM
RL = ONE
C-----------------------------------------------------------------------
C Check for violations of the constraints, if any are imposed.
C If any violations are found, the step vector P is rescaled, and the
C constraint check is repeated, until no violations are found.
C-----------------------------------------------------------------------
c here ICNFLG=0!
IF(ICNFLG .NE. 0) THEN
10 CONTINUE
CALL DYYPNW (NEQ,Y,YPRIME,CJ,RL,P,ICOPT,ID,YNEW,YPNEW)
CALL DCNSTR (NEQ, Y, YNEW, ICNSTR, TAU, RLX, IRET, IVAR)
IF (IRET .EQ. 1) THEN
RATIO1 = TAU/PNRM
RATIO = RATIO*RATIO1
DO 20 I = 1,NEQ
20 P(I) = P(I)*RATIO1
PNRM = TAU
IF(KPRIN .GE. 2) THEN
MSG = '------ CONSTRAINT VIOL., PNRM = (R1), INDEX = (I1)'
CALL XERRWD(MSG, 50, 902, 0, 1, IVAR, 0, 1, PNRM, 0.0D0)
ENDIF
IF (PNRM .LE. STPTOL) THEN
IRET = 1
RETURN
ENDIF
GO TO 10
ENDIF
ENDIF
C
SLPI = (-TWO*F1NRM)*RATIO
RLMIN = STPTOL/PNRM
IF (LSOFF .EQ. 0 .AND. KPRIN .GE. 2) THEN
MSG = '------ MIN. LAMBDA = (R1)'
CALL XERRWD(MSG, 25, 903, 0, 0, 0, 0, 1, RLMIN, 0.0D0)
ENDIF
C-----------------------------------------------------------------------
C Begin iteration to find RL value satisfying alpha-condition.
C If RL becomes less than RLMIN, then terminate with IRET = 1.
C-----------------------------------------------------------------------
100 CONTINUE
c ----------------------------------------------------------
CALL DYYPNW (NEQ,Y,YPRIME,CJ,RL,P,ICOPT,ID,YNEW,YPNEW)
CALL DFNRMD (NEQ, YNEW, T, YPNEW, R, CJ, TSCALE, WT, RES, IRES,
* FNRMP, WM, IWM, RPAR, IPAR)
IWM(LNRE) = IWM(LNRE) + 1
IF (IRES .NE. 0) THEN
IRET = 2
RETURN
ENDIF
IF (LSOFF .EQ. 1) GO TO 150
F1NRMP = FNRMP*FNRMP/TWO
IF (KPRIN .GE. 2) THEN
MSG = '------ LAMBDA = (R1)'
CALL XERRWD(MSG, 20, 904, 0, 0, 0, 0, 1, RL, 0.0D0)
MSG = '------ NORM(F1) = (R1), NORM(F1NEW) = (R2)'
CALL XERRWD(MSG, 43, 905, 0, 0, 0, 0, 2, F1NRM, F1NRMP)
ENDIF
IF (F1NRMP .GT. F1NRM + ALPHA*SLPI*RL) GO TO 200
C-----------------------------------------------------------------------
C Alpha-condition is satisfied, or linesearch is turned off.
C Copy YNEW,YPNEW to Y,YPRIME and return.
C-----------------------------------------------------------------------
150 IRET = 0
CALL DCOPY (NEQ, YNEW, 1, Y, 1)
CALL DCOPY (NEQ, YPNEW, 1, YPRIME, 1)
FNRM = FNRMP
IF (KPRIN .GE. 1) THEN
MSG = '------ LEAVING ROUTINE DLINSD, FNRM = (R1)'
CALL XERRWD(MSG, 42, 906, 0, 0, 0, 0, 1, FNRM, 0.0D0)
ENDIF
RETURN
C-----------------------------------------------------------------------
C Alpha-condition not satisfied. Perform backtrack to compute new RL
C value. If no satisfactory YNEW,YPNEW can be found sufficiently
C distinct from Y,YPRIME, then return IRET = 1.
C-----------------------------------------------------------------------
200 CONTINUE
IF (RL .LT. RLMIN) THEN
IRET = 1
RETURN
ENDIF
C
RL = RL/TWO
GO TO 100
C
C-----------------------END OF SUBROUTINE DLINSD ----------------------
END
SUBROUTINE DFNRMD (NEQ, Y, T, YPRIME, R, CJ, TSCALE, WT,
* RES, IRES, FNORM, WM, IWM, RPAR, IPAR)
C
C*** BEGIN PROLOGUE DFNRMD
C*** REFER TO DLINSD
C*** DATE WRITTEN 941025 (YYMMDD)
C*** REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DFNRMD calculates the scaled preconditioned norm of the nonlinear
C function used in the nonlinear iteration for obtaining consistent
C initial conditions. Specifically, DFNRMD calculates the weighted
C root-mean-square norm of the vector (J-inverse)*G(T,Y,YPRIME),
C where J is the Jacobian matrix.
C
C In addition to the parameters described in the calling program
C DLINSD, the parameters represent
C
C R -- Array of length NEQ that contains
C (J-inverse)*G(T,Y,YPRIME) on return.
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C FNORM -- Scalar containing the weighted norm of R on return.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C RES, DSLVD, DDWNRM
C
C***END PROLOGUE DFNRMD
C
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL RES
DIMENSION Y(*), YPRIME(*), WT(*), R(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
C-----------------------------------------------------------------------
C Call RES routine.
C-----------------------------------------------------------------------
IRES = 0
CALL RES(T,Y,YPRIME,CJ,R,IRES,RPAR,IPAR)
IF (IRES .LT. 0) RETURN
C-----------------------------------------------------------------------
C Apply inverse of Jacobian to vector R.
C-----------------------------------------------------------------------
CALL DSLVD(NEQ,R,WM,IWM)
C-----------------------------------------------------------------------
C Calculate norm of R.
C-----------------------------------------------------------------------
FNORM = DDWNRM(NEQ,R,WT,RPAR,IPAR)
IF (TSCALE .GT. 0.0D0) FNORM = FNORM*TSCALE*ABS(CJ)
C
RETURN
C-----------------------END OF SUBROUTINE DFNRMD ----------------------
END
SUBROUTINE DNEDD(X,Y,YPRIME,NEQ,RES,JACD,PDUM,H,WT,
* JSTART,IDID,RPAR,IPAR,PHI,GAMMA,DUMSVR,DELTA,E,
* WM,IWM,CJ,CJOLD,CJLAST,S,UROUND,DUME,DUMS,DUMR,
* EPCON,JCALC,JFDUM,KP1,NONNEG,NTYPE,IERNLS)
C
C***BEGIN PROLOGUE DNEDD
C***REFER TO DDASPK
C***DATE WRITTEN 891219 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNEDD solves a nonlinear system of
C algebraic equations of the form
C G(X,Y,YPRIME) = 0 for the unknown Y.
C
C The method used is a modified Newton scheme.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C JACD -- External user-supplied routine to evaluate the
C Jacobian. See JAC description for the case
C INFO(12) = 0 in the DDASPK prologue.
C PDUM -- Dummy argument.
C H -- Appropriate step size for next step.
C WT -- Vector of weights for error criterion.
C JSTART -- Indicates first call to this routine.
C If JSTART = 0, then this is the first call,
C otherwise it is not.
C IDID -- Completion flag, output by DNEDD.
C See IDID description in DDASPK prologue.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C PHI -- Array of divided differences used by
C DNEDD. The length is NEQ*(K+1),where
C K is the maximum order.
C GAMMA -- Array used to predict Y and YPRIME. The length
C is MAXORD+1 where MAXORD is the maximum order.
C DUMSVR -- Dummy argument.
C DELTA -- Work vector for NLS of length NEQ.
C E -- Error accumulation vector for NLS of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information such as the matrix
C of partial derivatives, permutation
C vector, and various other information.
C CJ -- Parameter always proportional to 1/H.
C CJOLD -- Saves the value of CJ as of the last call to DMATD.
C Accounts for changes in CJ needed to
C decide whether to call DMATD.
C CJLAST -- Previous value of CJ.
C S -- A scalar determined by the approximate rate
C of convergence of the Newton iteration and used
C in the convergence test for the Newton iteration.
C
C If RATE is defined to be an estimate of the
C rate of convergence of the Newton iteration,
C then S = RATE/(1.D0-RATE).
C
C The closer RATE is to 0., the faster the Newton
C iteration is converging; the closer RATE is to 1.,
C the slower the Newton iteration is converging.
C
C On the first Newton iteration with an up-dated
C preconditioner S = 100.D0, Thus the initial
C RATE of convergence is approximately 1.
C
C S is preserved from call to call so that the rate
C estimate from a previous step can be applied to
C the current step.
C UROUND -- Unit roundoff.
C DUME -- Dummy argument.
C DUMS -- Dummy argument.
C DUMR -- Dummy argument.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C JCALC -- Flag used to determine when to update
C the Jacobian matrix. In general:
C
C JCALC = -1 ==> Call the DMATD routine to update
C the Jacobian matrix.
C JCALC = 0 ==> Jacobian matrix is up-to-date.
C JCALC = 1 ==> Jacobian matrix is out-dated,
C but DMATD will not be called unless
C JCALC is set to -1.
C JFDUM -- Dummy argument.
C KP1 -- The current order(K) + 1; updated across calls.
C NONNEG -- Flag to determine nonnegativity constraints.
C NTYPE -- Identification code for the NLS routine.
C 0 ==> modified Newton; direct solver.
C IERNLS -- Error flag for nonlinear solver.
C 0 ==> nonlinear solver converged.
C 1 ==> recoverable error inside nonlinear solver.
C -1 ==> unrecoverable error inside nonlinear solver.
C
C All variables with "DUM" in their names are dummy variables
C which are not used in this routine.
C
C Following is a list and description of local variables which
C may not have an obvious usage. They are listed in roughly the
C order they occur in this subroutine.
C
C The following group of variables are passed as arguments to
C the Newton iteration solver. They are explained in greater detail
C in DNSD:
C TOLNEW, MULDEL, MAXIT, IERNEW
C
C IERTYP -- Flag which tells whether this subroutine is correct.
C 0 ==> correct subroutine.
C 1 ==> incorrect subroutine.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DDWNRM, RES, DMATD, DNSD
C
C***END PROLOGUE DNEDD
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*)
DIMENSION DELTA(*),E(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
DIMENSION PHI(NEQ,*),GAMMA(*)
EXTERNAL RES, JACD
C
PARAMETER (LNRE=12, LNJE=13)
C
SAVE MULDEL, MAXIT, XRATE
DATA MULDEL/1/, MAXIT/4/, XRATE/0.25D0/
C
C Verify that this is the correct subroutine.
C
IERTYP = 0
IF (NTYPE .NE. 0) THEN
IERTYP = 1
GO TO 380
ENDIF
C
C If this is the first step, perform initializations.
C
IF (JSTART .EQ. 0) THEN
CJOLD = CJ
JCALC = -1
ENDIF
C
C Perform all other initializations.
C
IERNLS = 0
C
C Decide whether new Jacobian is needed.
C
TEMP1 = (1.0D0 - XRATE)/(1.0D0 + XRATE)
TEMP2 = 1.0D0/TEMP1
IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1
IF (CJ .NE. CJLAST) S = 100.D0
C
C-----------------------------------------------------------------------
C Entry point for updating the Jacobian with current
C stepsize.
C-----------------------------------------------------------------------
300 CONTINUE
C
C Initialize all error flags to zero.
C
IERJ = 0
IRES = 0
IERNEW = 0
C
C Predict the solution and derivative and compute the tolerance
C for the Newton iteration.
C
DO 310 I=1,NEQ
Y(I)=PHI(I,1)
310 YPRIME(I)=0.0D0
DO 330 J=2,KP1
DO 320 I=1,NEQ
Y(I)=Y(I)+PHI(I,J)
320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J)
330 CONTINUE
PNORM = DDWNRM (NEQ,Y,WT,RPAR,IPAR)
TOLNEW = 100.D0*UROUND*PNORM
C
C Call RES to initialize DELTA.
C
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
C If indicated, reevaluate the iteration matrix
C J = dG/dY + CJ*dG/dYPRIME (where G(X,Y,YPRIME)=0).
C Set JCALC to 0 as an indicator that this has been done.
C
IF(JCALC .EQ. -1) THEN
IWM(LNJE)=IWM(LNJE)+1
JCALC=0
CALL DMATD(NEQ,X,Y,YPRIME,DELTA,CJ,H,IERJ,WT,E,WM,IWM,
* RES,IRES,UROUND,JACD,RPAR,IPAR)
CJOLD=CJ
S = 100.D0
IF (IRES .LT. 0) GO TO 380
IF(IERJ .NE. 0)GO TO 380
ENDIF
C
C Call the nonlinear Newton solver.
C
TEMP1 = 2.0D0/(1.0D0 + CJ/CJOLD)
CALL DNSD(X,Y,YPRIME,NEQ,RES,PDUM,WT,RPAR,IPAR,DUMSVR,
* DELTA,E,WM,IWM,CJ,DUMS,DUMR,DUME,EPCON,S,TEMP1,
* TOLNEW,MULDEL,MAXIT,IRES,IDUM,IERNEW)
C
IF (IERNEW .GT. 0 .AND. JCALC .NE. 0) THEN
C
C The Newton iteration had a recoverable failure with an old
C iteration matrix. Retry the step with a new iteration matrix.
C
JCALC = -1
GO TO 300
ENDIF
IF (IERNEW .NE. 0) GO TO 380
C
C The Newton iteration has converged. If nonnegativity of
C solution is required, set the solution nonnegative, if the
C perturbation to do it is small enough. If the change is too
C large, then consider the corrector iteration to have failed.
C
375 IF(NONNEG .EQ. 0) GO TO 390
DO 377 I = 1,NEQ
377 DELTA(I) = MIN(Y(I),0.0D0)
DELNRM = DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
IF(DELNRM .GT. EPCON) GO TO 380
DO 378 I = 1,NEQ
378 E(I) = E(I) - DELTA(I)
GO TO 390
C
C
C Exits from nonlinear solver.
C No convergence with current iteration
C matrix, or singular iteration matrix.
C Compute IERNLS and IDID accordingly.
C
380 CONTINUE
IF (IRES .LE. -2 .OR. IERTYP .NE. 0) THEN
IERNLS = -1
IF (IRES .LE. -2) IDID = -11
IF (IERTYP .NE. 0) IDID = -15
ELSE
IERNLS = 1
IF (IRES .LT. 0) IDID = -10
IF (IERJ .NE. 0) IDID = -8
ENDIF
C
390 JCALC = 1
RETURN
C
C------END OF SUBROUTINE DNEDD------------------------------------------
END
SUBROUTINE DNSD(X,Y,YPRIME,NEQ,RES,PDUM,WT,RPAR,IPAR,
* DUMSVR,DELTA,E,WM,IWM,CJ,DUMS,DUMR,DUME,EPCON,
* S,CONFAC,TOLNEW,MULDEL,MAXIT,IRES,IDUM,IERNEW)
C
C***BEGIN PROLOGUE DNSD
C***REFER TO DDASPK
C***DATE WRITTEN 891219 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 950126 (YYMMDD)
C***REVISION DATE 000711 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNSD solves a nonlinear system of
C algebraic equations of the form
C G(X,Y,YPRIME) = 0 for the unknown Y.
C
C The method used is a modified Newton scheme.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C PDUM -- Dummy argument.
C WT -- Vector of weights for error criterion.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C DUMSVR -- Dummy argument.
C DELTA -- Work vector for DNSD of length NEQ.
C E -- Error accumulation vector for DNSD of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information such as the matrix
C of partial derivatives, permutation
C vector, and various other information.
C CJ -- Parameter always proportional to 1/H (step size).
C DUMS -- Dummy argument.
C DUMR -- Dummy argument.
C DUME -- Dummy argument.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C S -- Used for error convergence tests.
C In the Newton iteration: S = RATE/(1 - RATE),
C where RATE is the estimated rate of convergence
C of the Newton iteration.
C The calling routine passes the initial value
C of S to the Newton iteration.
C CONFAC -- A residual scale factor to improve convergence.
C TOLNEW -- Tolerance on the norm of Newton correction in
C alternative Newton convergence test.
C MULDEL -- A flag indicating whether or not to multiply
C DELTA by CONFAC.
C 0 ==> do not scale DELTA by CONFAC.
C 1 ==> scale DELTA by CONFAC.
C MAXIT -- Maximum allowed number of Newton iterations.
C IRES -- Error flag returned from RES. See RES description
C in DDASPK prologue. If IRES = -1, then IERNEW
C will be set to 1.
C If IRES < -1, then IERNEW will be set to -1.
C IDUM -- Dummy argument.
C IERNEW -- Error flag for Newton iteration.
C 0 ==> Newton iteration converged.
C 1 ==> recoverable error inside Newton iteration.
C -1 ==> unrecoverable error inside Newton iteration.
C
C All arguments with "DUM" in their names are dummy arguments
C which are not used in this routine.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C DSLVD, DDWNRM, RES
C
C***END PROLOGUE DNSD
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*),DELTA(*),E(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
EXTERNAL RES
C
PARAMETER (LNRE=12, LNNI=19)
C
C Initialize Newton counter M and accumulation vector E.
C
M = 0
DO 100 I=1,NEQ
100 E(I)=0.0D0
C
C Corrector loop.
C
300 CONTINUE
IWM(LNNI) = IWM(LNNI) + 1
C
C If necessary, multiply residual by convergence factor.
C
IF (MULDEL .EQ. 1) THEN
DO 320 I = 1,NEQ
320 DELTA(I) = DELTA(I) * CONFAC
ENDIF
C
C Compute a new iterate (back-substitution).
C Store the correction in DELTA.
C
CALL DSLVD(NEQ,DELTA,WM,IWM)
C Update Y, E, and YPRIME.
C
DO 340 I=1,NEQ
Y(I)=Y(I)-DELTA(I)
E(I)=E(I)-DELTA(I)
YPRIME(I)=YPRIME(I)-CJ*DELTA(I)
340 continue
C
C Test for convergence of the iteration.
C
DELNRM=DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
IF (M .EQ. 0) THEN
OLDNRM = DELNRM
IF (DELNRM .LE. TOLNEW) GO TO 370
ELSE
RATE = (DELNRM/OLDNRM)**(1.0D0/M)
IF (RATE .GT. 0.9D0) GO TO 380
S = RATE/(1.0D0 - RATE)
ENDIF
IF (S*DELNRM .LE. EPCON) GO TO 370
C
C The corrector has not yet converged.
C Update M and test whether the
C maximum number of iterations have
C been tried.
C
M=M+1
IF(M.GE.MAXIT) GO TO 380
C
C Evaluate the residual,
C and go back to do another iteration.
C
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
GO TO 300
C
C The iteration has converged.
C
370 RETURN
C
C The iteration has not converged. Set IERNEW appropriately.
C
380 CONTINUE
IF (IRES .LE. -2 ) THEN
IERNEW = -1
ELSE
IERNEW = 1
ENDIF
RETURN
C
C
C------END OF SUBROUTINE DNSD-------------------------------------------
END
SUBROUTINE DMATD(NEQ,X,Y,YPRIME,DELTA,CJ,H,IER,EWT,E,
* WM,IWM,RES,IRES,UROUND,JACD,RPAR,IPAR)
C
C***BEGIN PROLOGUE DMATD
C***REFER TO DDASPK
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940701 (YYMMDD) (new LIPVT)
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine computes the iteration matrix
C J = dG/dY+CJ*dG/dYPRIME (where G(X,Y,YPRIME)=0).
C Here J is computed by:
C the user-supplied routine JACD if IWM(MTYPE) is 1 or 4, or
C by numerical difference quotients if IWM(MTYPE) is 2 or 5.
C
C The parameters have the following meanings.
C X = Independent variable.
C Y = Array containing predicted values.
C YPRIME = Array containing predicted derivatives.
C DELTA = Residual evaluated at (X,Y,YPRIME).
C (Used only if IWM(MTYPE)=2 or 5).
C CJ = Scalar parameter defining iteration matrix.
C H = Current stepsize in integration.
C IER = Variable which is .NE. 0 if iteration matrix
C is singular, and 0 otherwise.
C EWT = Vector of error weights for computing norms.
C E = Work space (temporary) of length NEQ.
C WM = Real work space for matrices. On output
C it contains the LU decomposition
C of the iteration matrix.
C IWM = Integer work space containing
C matrix information.
C RES = External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C IRES = Flag which is equal to zero if no illegal values
C in RES, and less than zero otherwise. (If IRES
C is less than zero, the matrix was not completed).
C In this case (if IRES .LT. 0), then IER = 0.
C UROUND = The unit roundoff error of the machine being used.
C JACD = Name of the external user-supplied routine
C to evaluate the iteration matrix. (This routine
C is only used if IWM(MTYPE) is 1 or 4)
C See JAC description for the case INFO(12) = 0
C in DDASPK prologue.
C RPAR,IPAR= Real and integer parameter arrays that
C are used for communication between the
C calling program and external user routines.
C They are not altered by DMATD.
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C JACD, RES, DGEFA, DGBFA
C
C***END PROLOGUE DMATD
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),DELTA(*),EWT(*),E(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
EXTERNAL RES, JACD
C
PARAMETER (LML=1, LMU=2, LMTYPE=4, LNRE=12, LNPD=22, LLCIWP=30)
C
LIPVT = IWM(LLCIWP)
IER = 0
MTYPE=IWM(LMTYPE)
GO TO (100,200,300,400,500),MTYPE
C
C
C Dense user-supplied matrix.
C
100 LENPD=IWM(LNPD)
DO 110 I=1,LENPD
110 WM(I)=0.0D0
c for mixed-model's Jacobian we need to pass some parameters
WM(NEQ*NEQ+1)=H
WM(NEQ*NEQ+2)=SQRT(UROUND)
DO 120 I=1,NEQ
120 Wm(NEQ*NEQ+2+I)=EWT(I)
CALL JACD(X,Y,YPRIME,WM,CJ,RPAR,IPAR)
GO TO 230
C
C
C Dense finite-difference-generated matrix.
C
200 IRES=0
NROW=0
SQUR = SQRT(UROUND)
DO 210 I=1,NEQ
DEL=SQUR*MAX(1.0D0,ABS(Y(I)),ABS(H*YPRIME(I)),
* ABS(1.D0/EWT(I)))
DEL=SIGN(DEL,H*YPRIME(I))
DEL=(Y(I)+DEL)-Y(I)
YSAVE=Y(I)
YPSAVE=YPRIME(I)
Y(I)=Y(I)+DEL
YPRIME(I)=YPRIME(I)+CJ*DEL
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,E,IRES,RPAR,IPAR)
IF (IRES .LT. 0) RETURN
DELINV=1.0D0/DEL
DO 220 L=1,NEQ
WM(NROW+L)=(E(L)-DELTA(L))*DELINV
c write(6 ,'(''J('',i2,'','',i2,'')='',e25.16,'';'' )')L ,I
c $ ,WM(NROW+L)
220 CONTINUE
NROW=NROW+NEQ
Y(I)=YSAVE
YPRIME(I)=YPSAVE
210 CONTINUE
C
C Do dense-matrix LU decomposition on J.
C
230 CALL DGEFA(WM,NEQ,NEQ,IWM(LIPVT),IER)
IF (IER .ne. 0) THEN
write(6,'('' Singular Jacobian at IER ='',i3)')IER
endif
RETURN
C
C
C Dummy section for IWM(MTYPE)=3.
C
300 RETURN
C
C
C Banded user-supplied matrix.
C
400 LENPD=IWM(LNPD)
DO 410 I=1,LENPD
410 WM(I)=0.0D0
CALL JACD(X,Y,YPRIME,WM,CJ,RPAR,IPAR)
MEBAND=2*IWM(LML)+IWM(LMU)+1
GO TO 550
C
C
C Banded finite-difference-generated matrix.
C
500 MBAND=IWM(LML)+IWM(LMU)+1
MBA=MIN0(MBAND,NEQ)
MEBAND=MBAND+IWM(LML)
MEB1=MEBAND-1
MSAVE=(NEQ/MBAND)+1
ISAVE=IWM(LNPD)
IPSAVE=ISAVE+MSAVE
IRES=0
SQUR=SQRT(UROUND)
DO 540 J=1,MBA
DO 510 N=J,NEQ,MBAND
K= (N-J)/MBAND + 1
WM(ISAVE+K)=Y(N)
WM(IPSAVE+K)=YPRIME(N)
DEL=SQUR*MAX(ABS(Y(N)),ABS(H*YPRIME(N)),
* ABS(1.D0/EWT(N)))
DEL=SIGN(DEL,H*YPRIME(N))
DEL=(Y(N)+DEL)-Y(N)
Y(N)=Y(N)+DEL
510 YPRIME(N)=YPRIME(N)+CJ*DEL
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,E,IRES,RPAR,IPAR)
IF (IRES .LT. 0) RETURN
DO 530 N=J,NEQ,MBAND
K= (N-J)/MBAND + 1
Y(N)=WM(ISAVE+K)
YPRIME(N)=WM(IPSAVE+K)
DEL=SQUR*MAX(ABS(Y(N)),ABS(H*YPRIME(N)),
* ABS(1.D0/EWT(N)))
DEL=SIGN(DEL,H*YPRIME(N))
DEL=(Y(N)+DEL)-Y(N)
DELINV=1.0D0/DEL
I1=MAX0(1,(N-IWM(LMU)))
I2=MIN0(NEQ,(N+IWM(LML)))
II=N*MEB1-IWM(LML)
DO 520 I=I1,I2
520 WM(II+I)=(E(I)-DELTA(I))*DELINV
530 CONTINUE
540 CONTINUE
C
C
C Do LU decomposition of banded J.
C
550 CALL DGBFA (WM,MEBAND,NEQ,IWM(LML),IWM(LMU),IWM(LIPVT),IER)
RETURN
C
C------END OF SUBROUTINE DMATD------------------------------------------
END
SUBROUTINE DSLVD(NEQ,DELTA,WM,IWM)
C
C***BEGIN PROLOGUE DSLVD
C***REFER TO DDASPK
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940701 (YYMMDD) (new LIPVT)
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine manages the solution of the linear
C system arising in the Newton iteration.
C Real matrix information and real temporary storage
C is stored in the array WM.
C Integer matrix information is stored in the array IWM.
C For a dense matrix, the LINPACK routine DGESL is called.
C For a banded matrix, the LINPACK routine DGBSL is called.
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DGESL, DGBSL
C
C***END PROLOGUE DSLVD
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION DELTA(*),WM(*),IWM(*)
C
PARAMETER (LML=1, LMU=2, LMTYPE=4, LLCIWP=30)
C
LIPVT = IWM(LLCIWP)
MTYPE=IWM(LMTYPE)
GO TO(100,100,300,400,400),MTYPE
C
C Dense matrix.
c subroutine dgesl(a,lda,n,ipvt,b,job)
c a*x=b => b<-x
c (WM*X=DELTA)
100 CALL DGESL(WM,NEQ,NEQ,IWM(LIPVT),DELTA,0)
RETURN
C
C Dummy section for MTYPE=3.
C
300 CONTINUE
RETURN
C
C Banded matrix.
C
400 MEBAND=2*IWM(LML)+IWM(LMU)+1
CALL DGBSL(WM,MEBAND,NEQ,IWM(LML),
* IWM(LMU),IWM(LIPVT),DELTA,0)
RETURN
C
C------END OF SUBROUTINE DSLVD------------------------------------------
END
SUBROUTINE DDASIK(X,Y,YPRIME,NEQ,ICOPT,ID,RES,JACK,PSOL,H,TSCALE,
* WT,JSKIP,RPAR,IPAR,SAVR,DELTA,R,YIC,YPIC,PWK,WM,IWM,CJ,UROUND,
* EPLI,SQRTN,RSQRTN,EPCON,RATEMX,STPTOL,JFLG,
* ICNFLG,ICNSTR,IERNLS)
C
C***BEGIN PROLOGUE DDASIK
C***REFER TO DDASPK
C***DATE WRITTEN 941026 (YYMMDD)
C***REVISION DATE 950808 (YYMMDD)
C***REVISION DATE 951110 Removed unreachable block 390.
C***REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C
C DDASIK solves a nonlinear system of algebraic equations of the
C form G(X,Y,YPRIME) = 0 for the unknown parts of Y and YPRIME in
C the initial conditions.
C
C An initial value for Y and initial guess for YPRIME are input.
C
C The method used is a Newton scheme with Krylov iteration and a
C linesearch algorithm.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector at x.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of equations to be integrated.
C ICOPT -- Initial condition option chosen (1 or 2).
C ID -- Array of dimension NEQ, which must be initialized
C if ICOPT = 1. See DDASIC.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C JACK -- External user-supplied routine to update
C the preconditioner. (This is optional).
C See JAC description for the case
C INFO(12) = 1 in the DDASPK prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C (This is optional). See explanation inside DDASPK.
C H -- Scaling factor for this initial condition calc.
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C WT -- Vector of weights for error criterion.
C JSKIP -- input flag to signal if initial JAC call is to be
C skipped. 1 => skip the call, 0 => do not skip call.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C SAVR -- Work vector for DDASIK of length NEQ.
C DELTA -- Work vector for DDASIK of length NEQ.
C R -- Work vector for DDASIK of length NEQ.
C YIC,YPIC -- Work vectors for DDASIK, each of length NEQ.
C PWK -- Work vector for DDASIK of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information for linear system
C solvers, and various other information.
C CJ -- Matrix parameter = 1/H (ICOPT = 1) or 0 (ICOPT = 2).
C UROUND -- Unit roundoff. Not used here.
C EPLI -- convergence test constant.
C See DDASPK prologue for more details.
C SQRTN -- Square root of NEQ.
C RSQRTN -- reciprical of square root of NEQ.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C RATEMX -- Maximum convergence rate for which Newton iteration
C is considered converging.
C JFLG -- Flag showing whether a Jacobian routine is supplied.
C ICNFLG -- Integer scalar. If nonzero, then constraint
C violations in the proposed new approximate solution
C will be checked for, and the maximum step length
C will be adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C IERNLS -- Error flag for nonlinear solver.
C 0 ==> nonlinear solver converged.
C 1,2 ==> recoverable error inside nonlinear solver.
C 1 => retry with current Y, YPRIME
C 2 => retry with original Y, YPRIME
C -1 ==> unrecoverable error in nonlinear solver.
C
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C RES, JACK, DNSIK, DCOPY
C
C***END PROLOGUE DDASIK
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),ID(*),WT(*),ICNSTR(*)
DIMENSION SAVR(*),DELTA(*),R(*),YIC(*),YPIC(*),PWK(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
EXTERNAL RES, JACK, PSOL
C
PARAMETER (LNRE=12, LNJE=13, LLOCWP=29, LLCIWP=30)
PARAMETER (LMXNIT=32, LMXNJ=33)
C
C
C Perform initializations.
C
LWP = IWM(LLOCWP)
LIWP = IWM(LLCIWP)
MXNIT = IWM(LMXNIT)
MXNJ = IWM(LMXNJ)
IERNLS = 0
NJ = 0
EPLIN = EPLI*EPCON
C
C Call RES to initialize DELTA.
C
IRES = 0
IWM(LNRE) = IWM(LNRE) + 1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 370
C
C Looping point for updating the preconditioner.
C
300 CONTINUE
C
C Initialize all error flags to zero.
C
IERPJ = 0
IRES = 0
IERNEW = 0
C
C If a Jacobian routine was supplied, call it.
C
IF (JFLG .EQ. 1 .AND. JSKIP .EQ. 0) THEN
NJ = NJ + 1
IWM(LNJE)=IWM(LNJE)+1
CALL JACK (RES, IRES, NEQ, X, Y, YPRIME, WT, DELTA, R, H, CJ,
* WM(LWP), IWM(LIWP), IERPJ, RPAR, IPAR)
IF (IRES .LT. 0 .OR. IERPJ .NE. 0) GO TO 370
ENDIF
JSKIP = 0
C
C Call the nonlinear Newton solver for up to MXNIT iterations.
C
CALL DNSIK(X,Y,YPRIME,NEQ,ICOPT,ID,RES,PSOL,WT,RPAR,IPAR,
* SAVR,DELTA,R,YIC,YPIC,PWK,WM,IWM,CJ,TSCALE,SQRTN,RSQRTN,
* EPLIN,EPCON,RATEMX,MXNIT,STPTOL,ICNFLG,ICNSTR,IERNEW)
C
IF (IERNEW .EQ. 1 .AND. NJ .LT. MXNJ .AND. JFLG .EQ. 1) THEN
C
C Up to MXNIT iterations were done, the convergence rate is < 1,
C a Jacobian routine is supplied, and the number of JACK calls
C is less than MXNJ.
C Copy the residual SAVR to DELTA, call JACK, and try again.
C
CALL DCOPY (NEQ, SAVR, 1, DELTA, 1)
GO TO 300
ENDIF
C
IF (IERNEW .NE. 0) GO TO 380
RETURN
C
C
C Unsuccessful exits from nonlinear solver.
C Set IERNLS accordingly.
C
370 IERNLS = 2
IF (IRES .LE. -2) IERNLS = -1
RETURN
C
380 IERNLS = MIN(IERNEW,2)
RETURN
C
C----------------------- END OF SUBROUTINE DDASIK-----------------------
END
SUBROUTINE DNSIK(X,Y,YPRIME,NEQ,ICOPT,ID,RES,PSOL,WT,RPAR,IPAR,
* SAVR,DELTA,R,YIC,YPIC,PWK,WM,IWM,CJ,TSCALE,SQRTN,RSQRTN,EPLIN,
* EPCON,RATEMX,MAXIT,STPTOL,ICNFLG,ICNSTR,IERNEW)
C
C***BEGIN PROLOGUE DNSIK
C***REFER TO DDASPK
C***DATE WRITTEN 940701 (YYMMDD)
C***REVISION DATE 950714 (YYMMDD)
C***REVISION DATE 000628 TSCALE argument added.
C***REVISION DATE 000628 Added criterion for IERNEW = 1 return.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNSIK solves a nonlinear system of algebraic equations of the
C form G(X,Y,YPRIME) = 0 for the unknown parts of Y and YPRIME in
C the initial conditions.
C
C The method used is a Newton scheme combined with a linesearch
C algorithm, using Krylov iterative linear system methods.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C ICOPT -- Initial condition option chosen (1 or 2).
C ID -- Array of dimension NEQ, which must be initialized
C if ICOPT = 1. See DDASIC.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C See explanation inside DDASPK.
C WT -- Vector of weights for error criterion.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C SAVR -- Work vector for DNSIK of length NEQ.
C DELTA -- Residual vector on entry, and work vector of
C length NEQ for DNSIK.
C R -- Work vector for DNSIK of length NEQ.
C YIC,YPIC -- Work vectors for DNSIK, each of length NEQ.
C PWK -- Work vector for DNSIK of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information such as the matrix
C of partial derivatives, permutation
C vector, and various other information.
C CJ -- Matrix parameter = 1/H (ICOPT = 1) or 0 (ICOPT = 2).
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C SQRTN -- Square root of NEQ.
C RSQRTN -- reciprical of square root of NEQ.
C EPLIN -- Tolerance for linear system solver.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C RATEMX -- Maximum convergence rate for which Newton iteration
C is considered converging.
C MAXIT -- Maximum allowed number of Newton iterations.
C STPTOL -- Tolerance used in calculating the minimum lambda
C value allowed.
C ICNFLG -- Integer scalar. If nonzero, then constraint
C violations in the proposed new approximate solution
C will be checked for, and the maximum step length
C will be adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C IERNEW -- Error flag for Newton iteration.
C 0 ==> Newton iteration converged.
C 1 ==> failed to converge, but RATE .lt. 1, or the
C residual norm was reduced by a factor of .1.
C 2 ==> failed to converge, RATE .gt. RATEMX.
C 3 ==> other recoverable error.
C -1 ==> unrecoverable error inside Newton iteration.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C DFNRMK, DSLVK, DDWNRM, DLINSK, DCOPY
C
C***END PROLOGUE DNSIK
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*),ID(*),DELTA(*),R(*),SAVR(*)
DIMENSION YIC(*),YPIC(*),PWK(*),WM(*),IWM(*), RPAR(*),IPAR(*)
DIMENSION ICNSTR(*)
EXTERNAL RES, PSOL
C
PARAMETER (LNNI=19, LNPS=21, LLOCWP=29, LLCIWP=30)
PARAMETER (LLSOFF=35, LSTOL=14)
C
C
C Initializations. M is the Newton iteration counter.
C
LSOFF = IWM(LLSOFF)
M = 0
RATE = 1.0D0
LWP = IWM(LLOCWP)
LIWP = IWM(LLCIWP)
RLX = 0.4D0
C
C Save residual in SAVR.
C
CALL DCOPY (NEQ, DELTA, 1, SAVR, 1)
C
C Compute norm of (P-inverse)*(residual).
C
CALL DFNRMK (NEQ, Y, X, YPRIME, SAVR, R, CJ, TSCALE, WT,
* SQRTN, RSQRTN, RES, IRES, PSOL, 1, IER, FNRM, EPLIN,
* WM(LWP), IWM(LIWP), PWK, RPAR, IPAR)
IWM(LNPS) = IWM(LNPS) + 1
IF (IER .NE. 0) THEN
IERNEW = 3
RETURN
ENDIF
C
C Return now if residual norm is .le. EPCON.
C
IF (FNRM .LE. EPCON) RETURN
C
C Newton iteration loop.
C
FNRM0 = FNRM
300 CONTINUE
IWM(LNNI) = IWM(LNNI) + 1
C
C Compute a new step vector DELTA.
C
CALL DSLVK (NEQ, Y, X, YPRIME, SAVR, DELTA, WT, WM, IWM,
* RES, IRES, PSOL, IERSL, CJ, EPLIN, SQRTN, RSQRTN, RHOK,
* RPAR, IPAR)
IF (IRES .NE. 0 .OR. IERSL .NE. 0) GO TO 390
C
C Get norm of DELTA. Return now if DELTA is zero.
C
DELNRM = DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
IF (DELNRM .EQ. 0.0D0) RETURN
C
C Call linesearch routine for global strategy and set RATE.
C
OLDFNM = FNRM
C
CALL DLINSK (NEQ, Y, X, YPRIME, SAVR, CJ, TSCALE, DELTA, DELNRM,
* WT, SQRTN, RSQRTN, LSOFF, STPTOL, IRET, RES, IRES, PSOL,
* WM, IWM, RHOK, FNRM, ICOPT, ID, WM(LWP), IWM(LIWP), R, EPLIN,
* YIC, YPIC, PWK, ICNFLG, ICNSTR, RLX, RPAR, IPAR)
C
RATE = FNRM/OLDFNM
C
C Check for error condition from linesearch.
IF (IRET .NE. 0) GO TO 390
C
C Test for convergence of the iteration, and return or loop.
C
IF (FNRM .LE. EPCON) RETURN
C
C The iteration has not yet converged. Update M.
C Test whether the maximum number of iterations have been tried.
C
M = M + 1
IF(M .GE. MAXIT) GO TO 380
C
C Copy the residual SAVR to DELTA and loop for another iteration.
C
CALL DCOPY (NEQ, SAVR, 1, DELTA, 1)
GO TO 300
C
C The maximum number of iterations was done. Set IERNEW and return.
C
380 IF (RATE .LE. RATEMX .OR. FNRM .LE. 0.1D0*FNRM0) THEN
IERNEW = 1
ELSE
IERNEW = 2
ENDIF
RETURN
C
390 IF (IRES .LE. -2 .OR. IERSL .LT. 0) THEN
IERNEW = -1
ELSE
IERNEW = 3
IF (IRES .EQ. 0 .AND. IERSL .EQ. 1 .AND. M .GE. 2
1 .AND. RATE .LT. 1.0D0) IERNEW = 1
ENDIF
RETURN
C
C
C----------------------- END OF SUBROUTINE DNSIK------------------------
END
SUBROUTINE DLINSK (NEQ, Y, T, YPRIME, SAVR, CJ, TSCALE, P, PNRM,
* WT, SQRTN, RSQRTN, LSOFF, STPTOL, IRET, RES, IRES, PSOL,
* WM, IWM, RHOK, FNRM, ICOPT, ID, WP, IWP, R, EPLIN, YNEW, YPNEW,
* PWK, ICNFLG, ICNSTR, RLX, RPAR, IPAR)
C
C***BEGIN PROLOGUE DLINSK
C***REFER TO DNSIK
C***DATE WRITTEN 940830 (YYMMDD)
C***REVISION DATE 951006 (Arguments SQRTN, RSQRTN added.)
C***REVISION DATE 960129 Moved line RL = ONE to top block.
C***REVISION DATE 000628 TSCALE argument added.
C***REVISION DATE 000628 RHOK*RHOK term removed in alpha test.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DLINSK uses a linesearch algorithm to calculate a new (Y,YPRIME)
C pair (YNEW,YPNEW) such that
C
C f(YNEW,YPNEW) .le. (1 - 2*ALPHA*RL)*f(Y,YPRIME)
C
C where 0 < RL <= 1, and RHOK is the scaled preconditioned norm of
C the final residual vector in the Krylov iteration.
C Here, f(y,y') is defined as
C
C f(y,y') = (1/2)*norm( (P-inverse)*G(t,y,y') )**2 ,
C
C where norm() is the weighted RMS vector norm, G is the DAE
C system residual function, and P is the preconditioner used
C in the Krylov iteration.
C
C In addition to the parameters defined elsewhere, we have
C
C SAVR -- Work array of length NEQ, containing the residual
C vector G(t,y,y') on return.
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C P -- Approximate Newton step used in backtracking.
C PNRM -- Weighted RMS norm of P.
C LSOFF -- Flag showing whether the linesearch algorithm is
C to be invoked. 0 means do the linesearch,
C 1 means turn off linesearch.
C STPTOL -- Tolerance used in calculating the minimum lambda
C value allowed.
C ICNFLG -- Integer scalar. If nonzero, then constraint violations
C in the proposed new approximate solution will be
C checked for, and the maximum step length will be
C adjusted accordingly.
C ICNSTR -- Integer array of length NEQ containing flags for
C checking constraints.
C RHOK -- Weighted norm of preconditioned Krylov residual.
C RLX -- Real scalar restricting update size in DCNSTR.
C YNEW -- Array of length NEQ used to hold the new Y in
C performing the linesearch.
C YPNEW -- Array of length NEQ used to hold the new YPRIME in
C performing the linesearch.
C PWK -- Work vector of length NEQ for use in PSOL.
C Y -- Array of length NEQ containing the new Y (i.e.,=YNEW).
C YPRIME -- Array of length NEQ containing the new YPRIME
C (i.e.,=YPNEW).
C FNRM -- Real scalar containing SQRT(2*f(Y,YPRIME)) for the
C current (Y,YPRIME) on input and output.
C R -- Work space length NEQ for residual vector.
C IRET -- Return flag.
C IRET=0 means that a satisfactory (Y,YPRIME) was found.
C IRET=1 means that the routine failed to find a new
C (Y,YPRIME) that was sufficiently distinct from
C the current (Y,YPRIME) pair.
C IRET=2 means a failure in RES or PSOL.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C DFNRMK, DYYPNW, DCNSTR, DCOPY, XERRWD
C
C***END PROLOGUE DLINSK
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
EXTERNAL RES, PSOL
DIMENSION Y(*), YPRIME(*), P(*), WT(*), SAVR(*), R(*), ID(*)
DIMENSION WM(*), IWM(*), YNEW(*), YPNEW(*), PWK(*), ICNSTR(*)
DIMENSION WP(*), IWP(*), RPAR(*), IPAR(*)
CHARACTER MSG*80
C
PARAMETER (LNRE=12, LNPS=21, LKPRIN=31)
C
SAVE ALPHA, ONE, TWO
DATA ALPHA/1.0D-4/, ONE/1.0D0/, TWO/2.0D0/
C
KPRIN=IWM(LKPRIN)
F1NRM = (FNRM*FNRM)/TWO
RATIO = ONE
C
IF (KPRIN .GE. 2) THEN
MSG = '------ IN ROUTINE DLINSK-- PNRM = (R1)'
CALL XERRWD(MSG, 38, 921, 0, 0, 0, 0, 1, PNRM, 0.0D0)
ENDIF
TAU = PNRM
RL = ONE
C-----------------------------------------------------------------------
C Check for violations of the constraints, if any are imposed.
C If any violations are found, the step vector P is rescaled, and the
C constraint check is repeated, until no violations are found.
C-----------------------------------------------------------------------
IF (ICNFLG .NE. 0) THEN
10 CONTINUE
CALL DYYPNW (NEQ,Y,YPRIME,CJ,RL,P,ICOPT,ID,YNEW,YPNEW)
CALL DCNSTR (NEQ, Y, YNEW, ICNSTR, TAU, RLX, IRET, IVAR)
IF (IRET .EQ. 1) THEN
RATIO1 = TAU/PNRM
RATIO = RATIO*RATIO1
DO 20 I = 1,NEQ
20 P(I) = P(I)*RATIO1
PNRM = TAU
IF (KPRIN .GE. 2) THEN
MSG = '------ CONSTRAINT VIOL., PNRM = (R1), INDEX = (I1)'
CALL XERRWD (MSG, 50, 922, 0, 1, IVAR, 0, 1, PNRM, 0.0D0)
ENDIF
IF (PNRM .LE. STPTOL) THEN
IRET = 1
RETURN
ENDIF
GO TO 10
ENDIF
ENDIF
C
SLPI = -TWO*F1NRM*RATIO
RLMIN = STPTOL/PNRM
IF (LSOFF .EQ. 0 .AND. KPRIN .GE. 2) THEN
MSG = '------ MIN. LAMBDA = (R1)'
CALL XERRWD(MSG, 25, 923, 0, 0, 0, 0, 1, RLMIN, 0.0D0)
ENDIF
C-----------------------------------------------------------------------
C Begin iteration to find RL value satisfying alpha-condition.
C Update YNEW and YPNEW, then compute norm of new scaled residual and
C perform alpha condition test.
C-----------------------------------------------------------------------
100 CONTINUE
CALL DYYPNW (NEQ,Y,YPRIME,CJ,RL,P,ICOPT,ID,YNEW,YPNEW)
CALL DFNRMK (NEQ, YNEW, T, YPNEW, SAVR, R, CJ, TSCALE, WT,
* SQRTN, RSQRTN, RES, IRES, PSOL, 0, IER, FNRMP, EPLIN,
* WP, IWP, PWK, RPAR, IPAR)
IWM(LNRE) = IWM(LNRE) + 1
IF (IRES .GE. 0) IWM(LNPS) = IWM(LNPS) + 1
IF (IRES .NE. 0 .OR. IER .NE. 0) THEN
IRET = 2
RETURN
ENDIF
IF (LSOFF .EQ. 1) GO TO 150
C
F1NRMP = FNRMP*FNRMP/TWO
IF (KPRIN .GE. 2) THEN
MSG = '------ LAMBDA = (R1)'
CALL XERRWD(MSG, 20, 924, 0, 0, 0, 0, 1, RL, 0.0D0)
MSG = '------ NORM(F1) = (R1), NORM(F1NEW) = (R2)'
CALL XERRWD(MSG, 43, 925, 0, 0, 0, 0, 2, F1NRM, F1NRMP)
ENDIF
IF (F1NRMP .GT. F1NRM + ALPHA*SLPI*RL) GO TO 200
C-----------------------------------------------------------------------
C Alpha-condition is satisfied, or linesearch is turned off.
C Copy YNEW,YPNEW to Y,YPRIME and return.
C-----------------------------------------------------------------------
150 IRET = 0
CALL DCOPY(NEQ, YNEW, 1, Y, 1)
CALL DCOPY(NEQ, YPNEW, 1, YPRIME, 1)
FNRM = FNRMP
IF (KPRIN .GE. 1) THEN
MSG = '------ LEAVING ROUTINE DLINSK, FNRM = (R1)'
CALL XERRWD(MSG, 42, 926, 0, 0, 0, 0, 1, FNRM, 0.0D0)
ENDIF
RETURN
C-----------------------------------------------------------------------
C Alpha-condition not satisfied. Perform backtrack to compute new RL
C value. If RL is less than RLMIN, i.e. no satisfactory YNEW,YPNEW can
C be found sufficiently distinct from Y,YPRIME, then return IRET = 1.
C-----------------------------------------------------------------------
200 CONTINUE
IF (RL .LT. RLMIN) THEN
IRET = 1
RETURN
ENDIF
C
RL = RL/TWO
GO TO 100
C
C----------------------- END OF SUBROUTINE DLINSK ----------------------
END
SUBROUTINE DFNRMK (NEQ, Y, T, YPRIME, SAVR, R, CJ, TSCALE, WT,
* SQRTN, RSQRTN, RES, IRES, PSOL, IRIN, IER,
* FNORM, EPLIN, WP, IWP, PWK, RPAR, IPAR)
C
C***BEGIN PROLOGUE DFNRMK
C***REFER TO DLINSK
C***DATE WRITTEN 940830 (YYMMDD)
C***REVISION DATE 951006 (SQRTN, RSQRTN, and scaling of WT added.)
C***REVISION DATE 000628 TSCALE argument added.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DFNRMK calculates the scaled preconditioned norm of the nonlinear
C function used in the nonlinear iteration for obtaining consistent
C initial conditions. Specifically, DFNRMK calculates the weighted
C root-mean-square norm of the vector (P-inverse)*G(T,Y,YPRIME),
C where P is the preconditioner matrix.
C
C In addition to the parameters described in the calling program
C DLINSK, the parameters represent
C
C TSCALE -- Scale factor in T, used for stopping tests if nonzero.
C IRIN -- Flag showing whether the current residual vector is
C input in SAVR. 1 means it is, 0 means it is not.
C R -- Array of length NEQ that contains
C (P-inverse)*G(T,Y,YPRIME) on return.
C FNORM -- Scalar containing the weighted norm of R on return.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C RES, DCOPY, DSCAL, PSOL, DDWNRM
C
C***END PROLOGUE DFNRMK
C
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL RES, PSOL
DIMENSION Y(*), YPRIME(*), WT(*), SAVR(*), R(*), PWK(*)
DIMENSION WP(*), IWP(*), RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C Call RES routine if IRIN = 0.
C-----------------------------------------------------------------------
IF (IRIN .EQ. 0) THEN
IRES = 0
CALL RES (T, Y, YPRIME, CJ, SAVR, IRES, RPAR, IPAR)
IF (IRES .LT. 0) RETURN
ENDIF
C-----------------------------------------------------------------------
C Apply inverse of left preconditioner to vector R.
C First scale WT array by 1/sqrt(N), and undo scaling afterward.
C-----------------------------------------------------------------------
CALL DCOPY(NEQ, SAVR, 1, R, 1)
CALL DSCAL (NEQ, RSQRTN, WT, 1)
IER = 0
CALL PSOL (NEQ, T, Y, YPRIME, SAVR, PWK, CJ, WT, WP, IWP,
* R, EPLIN, IER, RPAR, IPAR)
CALL DSCAL (NEQ, SQRTN, WT, 1)
IF (IER .NE. 0) RETURN
C-----------------------------------------------------------------------
C Calculate norm of R.
C-----------------------------------------------------------------------
FNORM = DDWNRM (NEQ, R, WT, RPAR, IPAR)
IF (TSCALE .GT. 0.0D0) FNORM = FNORM*TSCALE*ABS(CJ)
C
RETURN
C----------------------- END OF SUBROUTINE DFNRMK ----------------------
END
SUBROUTINE DNEDK(X,Y,YPRIME,NEQ,RES,JACK,PSOL,
* H,WT,JSTART,IDID,RPAR,IPAR,PHI,GAMMA,SAVR,DELTA,E,
* WM,IWM,CJ,CJOLD,CJLAST,S,UROUND,EPLI,SQRTN,RSQRTN,
* EPCON,JCALC,JFLG,KP1,NONNEG,NTYPE,IERNLS)
C
C***BEGIN PROLOGUE DNEDK
C***REFER TO DDASPK
C***DATE WRITTEN 891219 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940701 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNEDK solves a nonlinear system of
C algebraic equations of the form
C G(X,Y,YPRIME) = 0 for the unknown Y.
C
C The method used is a matrix-free Newton scheme.
C
C The parameters represent
C X -- Independent variable.
C Y -- Solution vector at x.
C YPRIME -- Derivative of solution vector
C after successful step.
C NEQ -- Number of equations to be integrated.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C JACK -- External user-supplied routine to update
C the preconditioner. (This is optional).
C See JAC description for the case
C INFO(12) = 1 in the DDASPK prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C (This is optional). See explanation inside DDASPK.
C H -- Appropriate step size for this step.
C WT -- Vector of weights for error criterion.
C JSTART -- Indicates first call to this routine.
C If JSTART = 0, then this is the first call,
C otherwise it is not.
C IDID -- Completion flag, output by DNEDK.
C See IDID description in DDASPK prologue.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C PHI -- Array of divided differences used by
C DNEDK. The length is NEQ*(K+1), where
C K is the maximum order.
C GAMMA -- Array used to predict Y and YPRIME. The length
C is K+1, where K is the maximum order.
C SAVR -- Work vector for DNEDK of length NEQ.
C DELTA -- Work vector for DNEDK of length NEQ.
C E -- Error accumulation vector for DNEDK of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information for linear system
C solvers, and various other information.
C CJ -- Parameter always proportional to 1/H.
C CJOLD -- Saves the value of CJ as of the last call to DITMD.
C Accounts for changes in CJ needed to
C decide whether to call DITMD.
C CJLAST -- Previous value of CJ.
C S -- A scalar determined by the approximate rate
C of convergence of the Newton iteration and used
C in the convergence test for the Newton iteration.
C
C If RATE is defined to be an estimate of the
C rate of convergence of the Newton iteration,
C then S = RATE/(1.D0-RATE).
C
C The closer RATE is to 0., the faster the Newton
C iteration is converging; the closer RATE is to 1.,
C the slower the Newton iteration is converging.
C
C On the first Newton iteration with an up-dated
C preconditioner S = 100.D0, Thus the initial
C RATE of convergence is approximately 1.
C
C S is preserved from call to call so that the rate
C estimate from a previous step can be applied to
C the current step.
C UROUND -- Unit roundoff. Not used here.
C EPLI -- convergence test constant.
C See DDASPK prologue for more details.
C SQRTN -- Square root of NEQ.
C RSQRTN -- reciprical of square root of NEQ.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C JCALC -- Flag used to determine when to update
C the Jacobian matrix. In general:
C
C JCALC = -1 ==> Call the DITMD routine to update
C the Jacobian matrix.
C JCALC = 0 ==> Jacobian matrix is up-to-date.
C JCALC = 1 ==> Jacobian matrix is out-dated,
C but DITMD will not be called unless
C JCALC is set to -1.
C JFLG -- Flag showing whether a Jacobian routine is supplied.
C KP1 -- The current order + 1; updated across calls.
C NONNEG -- Flag to determine nonnegativity constraints.
C NTYPE -- Identification code for the DNEDK routine.
C 1 ==> modified Newton; iterative linear solver.
C 2 ==> modified Newton; user-supplied linear solver.
C IERNLS -- Error flag for nonlinear solver.
C 0 ==> nonlinear solver converged.
C 1 ==> recoverable error inside non-linear solver.
C -1 ==> unrecoverable error inside non-linear solver.
C
C The following group of variables are passed as arguments to
C the Newton iteration solver. They are explained in greater detail
C in DNSK:
C TOLNEW, MULDEL, MAXIT, IERNEW
C
C IERTYP -- Flag which tells whether this subroutine is correct.
C 0 ==> correct subroutine.
C 1 ==> incorrect subroutine.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C RES, JACK, DDWNRM, DNSK
C
C***END PROLOGUE DNEDK
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*)
DIMENSION PHI(NEQ,*),SAVR(*),DELTA(*),E(*)
DIMENSION WM(*),IWM(*)
DIMENSION GAMMA(*),RPAR(*),IPAR(*)
EXTERNAL RES, JACK, PSOL
C
PARAMETER (LNRE=12, LNJE=13, LLOCWP=29, LLCIWP=30)
C
SAVE MULDEL, MAXIT, XRATE
DATA MULDEL/0/, MAXIT/4/, XRATE/0.25D0/
C
C Verify that this is the correct subroutine.
C
IERTYP = 0
IF (NTYPE .NE. 1) THEN
IERTYP = 1
GO TO 380
ENDIF
C
C If this is the first step, perform initializations.
C
IF (JSTART .EQ. 0) THEN
CJOLD = CJ
JCALC = -1
S = 100.D0
ENDIF
C
C Perform all other initializations.
C
IERNLS = 0
LWP = IWM(LLOCWP)
LIWP = IWM(LLCIWP)
C
C Decide whether to update the preconditioner.
C
IF (JFLG .NE. 0) THEN
TEMP1 = (1.0D0 - XRATE)/(1.0D0 + XRATE)
TEMP2 = 1.0D0/TEMP1
IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1
IF (CJ .NE. CJLAST) S = 100.D0
ELSE
JCALC = 0
ENDIF
C
C Looping point for updating preconditioner with current stepsize.
C
300 CONTINUE
C
C Initialize all error flags to zero.
C
IERPJ = 0
IRES = 0
IERSL = 0
IERNEW = 0
C
C Predict the solution and derivative and compute the tolerance
C for the Newton iteration.
C
DO 310 I=1,NEQ
Y(I)=PHI(I,1)
310 YPRIME(I)=0.0D0
DO 330 J=2,KP1
DO 320 I=1,NEQ
Y(I)=Y(I)+PHI(I,J)
320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J)
330 CONTINUE
EPLIN = EPLI*EPCON
TOLNEW = EPLIN
C
C Call RES to initialize DELTA.
C
IWM(LNRE)=IWM(LNRE)+1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
C
C
C If indicated, update the preconditioner.
C Set JCALC to 0 as an indicator that this has been done.
C
IF(JCALC .EQ. -1)THEN
IWM(LNJE) = IWM(LNJE) + 1
JCALC=0
CALL JACK (RES, IRES, NEQ, X, Y, YPRIME, WT, DELTA, E, H, CJ,
* WM(LWP), IWM(LIWP), IERPJ, RPAR, IPAR)
CJOLD=CJ
S = 100.D0
IF (IRES .LT. 0) GO TO 380
IF (IERPJ .NE. 0) GO TO 380
ENDIF
C
C Call the nonlinear Newton solver.
C
CALL DNSK(X,Y,YPRIME,NEQ,RES,PSOL,WT,RPAR,IPAR,SAVR,
* DELTA,E,WM,IWM,CJ,SQRTN,RSQRTN,EPLIN,EPCON,
* S,TEMP1,TOLNEW,MULDEL,MAXIT,IRES,IERSL,IERNEW)
C
IF (IERNEW .GT. 0 .AND. JCALC .NE. 0) THEN
C
C The Newton iteration had a recoverable failure with an old
C preconditioner. Retry the step with a new preconditioner.
C
JCALC = -1
GO TO 300
ENDIF
C
IF (IERNEW .NE. 0) GO TO 380
C
C The Newton iteration has converged. If nonnegativity of
C solution is required, set the solution nonnegative, if the
C perturbation to do it is small enough. If the change is too
C large, then consider the corrector iteration to have failed.
C
IF(NONNEG .EQ. 0) GO TO 390
DO 360 I = 1,NEQ
360 DELTA(I) = MIN(Y(I),0.0D0)
DELNRM = DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
IF(DELNRM .GT. EPCON) GO TO 380
DO 370 I = 1,NEQ
370 E(I) = E(I) - DELTA(I)
GO TO 390
C
C
C Exits from nonlinear solver.
C No convergence with current preconditioner.
C Compute IERNLS and IDID accordingly.
C
380 CONTINUE
IF (IRES .LE. -2 .OR. IERSL .LT. 0 .OR. IERTYP .NE. 0) THEN
IERNLS = -1
IF (IRES .LE. -2) IDID = -11
IF (IERSL .LT. 0) IDID = -13
IF (IERTYP .NE. 0) IDID = -15
ELSE
IERNLS = 1
IF (IRES .EQ. -1) IDID = -10
IF (IERPJ .NE. 0) IDID = -5
IF (IERSL .GT. 0) IDID = -14
ENDIF
C
C
390 JCALC = 1
RETURN
C
C------END OF SUBROUTINE DNEDK------------------------------------------
END
SUBROUTINE DNSK(X,Y,YPRIME,NEQ,RES,PSOL,WT,RPAR,IPAR,
* SAVR,DELTA,E,WM,IWM,CJ,SQRTN,RSQRTN,EPLIN,EPCON,
* S,CONFAC,TOLNEW,MULDEL,MAXIT,IRES,IERSL,IERNEW)
C
C***BEGIN PROLOGUE DNSK
C***REFER TO DDASPK
C***DATE WRITTEN 891219 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 950126 (YYMMDD)
C***REVISION DATE 000711 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DNSK solves a nonlinear system of
C algebraic equations of the form
C G(X,Y,YPRIME) = 0 for the unknown Y.
C
C The method used is a modified Newton scheme.
C
C The parameters represent
C
C X -- Independent variable.
C Y -- Solution vector.
C YPRIME -- Derivative of solution vector.
C NEQ -- Number of unknowns.
C RES -- External user-supplied subroutine
C to evaluate the residual. See RES description
C in DDASPK prologue.
C PSOL -- External user-supplied routine to solve
C a linear system using preconditioning.
C See explanation inside DDASPK.
C WT -- Vector of weights for error criterion.
C RPAR,IPAR -- Real and integer arrays used for communication
C between the calling program and external user
C routines. They are not altered within DASPK.
C SAVR -- Work vector for DNSK of length NEQ.
C DELTA -- Work vector for DNSK of length NEQ.
C E -- Error accumulation vector for DNSK of length NEQ.
C WM,IWM -- Real and integer arrays storing
C matrix information such as the matrix
C of partial derivatives, permutation
C vector, and various other information.
C CJ -- Parameter always proportional to 1/H (step size).
C SQRTN -- Square root of NEQ.
C RSQRTN -- reciprical of square root of NEQ.
C EPLIN -- Tolerance for linear system solver.
C EPCON -- Tolerance to test for convergence of the Newton
C iteration.
C S -- Used for error convergence tests.
C In the Newton iteration: S = RATE/(1.D0-RATE),
C where RATE is the estimated rate of convergence
C of the Newton iteration.
C
C The closer RATE is to 0., the faster the Newton
C iteration is converging; the closer RATE is to 1.,
C the slower the Newton iteration is converging.
C
C The calling routine sends the initial value
C of S to the Newton iteration.
C CONFAC -- A residual scale factor to improve convergence.
C TOLNEW -- Tolerance on the norm of Newton correction in
C alternative Newton convergence test.
C MULDEL -- A flag indicating whether or not to multiply
C DELTA by CONFAC.
C 0 ==> do not scale DELTA by CONFAC.
C 1 ==> scale DELTA by CONFAC.
C MAXIT -- Maximum allowed number of Newton iterations.
C IRES -- Error flag returned from RES. See RES description
C in DDASPK prologue. If IRES = -1, then IERNEW
C will be set to 1.
C If IRES < -1, then IERNEW will be set to -1.
C IERSL -- Error flag for linear system solver.
C See IERSL description in subroutine DSLVK.
C If IERSL = 1, then IERNEW will be set to 1.
C If IERSL < 0, then IERNEW will be set to -1.
C IERNEW -- Error flag for Newton iteration.
C 0 ==> Newton iteration converged.
C 1 ==> recoverable error inside Newton iteration.
C -1 ==> unrecoverable error inside Newton iteration.
C-----------------------------------------------------------------------
C
C***ROUTINES CALLED
C RES, DSLVK, DDWNRM
C
C***END PROLOGUE DNSK
C
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(*),YPRIME(*),WT(*),DELTA(*),E(*),SAVR(*)
DIMENSION WM(*),IWM(*), RPAR(*),IPAR(*)
EXTERNAL RES, PSOL
C
PARAMETER (LNNI=19, LNRE=12)
C
C Initialize Newton counter M and accumulation vector E.
C
M = 0
DO 100 I=1,NEQ
100 E(I) = 0.0D0
C
C Corrector loop.
C
300 CONTINUE
IWM(LNNI) = IWM(LNNI) + 1
C
C If necessary, multiply residual by convergence factor.
C
IF (MULDEL .EQ. 1) THEN
DO 320 I = 1,NEQ
320 DELTA(I) = DELTA(I) * CONFAC
ENDIF
C
C Save residual in SAVR.
C
DO 340 I = 1,NEQ
340 SAVR(I) = DELTA(I)
C
C Compute a new iterate. Store the correction in DELTA.
C
CALL DSLVK (NEQ, Y, X, YPRIME, SAVR, DELTA, WT, WM, IWM,
* RES, IRES, PSOL, IERSL, CJ, EPLIN, SQRTN, RSQRTN, RHOK,
* RPAR, IPAR)
IF (IRES .NE. 0 .OR. IERSL .NE. 0) GO TO 380
C
C Update Y, E, and YPRIME.
C
DO 360 I=1,NEQ
Y(I) = Y(I) - DELTA(I)
E(I) = E(I) - DELTA(I)
360 YPRIME(I) = YPRIME(I) - CJ*DELTA(I)
C
C Test for convergence of the iteration.
C
DELNRM = DDWNRM(NEQ,DELTA,WT,RPAR,IPAR)
IF (M .EQ. 0) THEN
OLDNRM = DELNRM
IF (DELNRM .LE. TOLNEW) GO TO 370
ELSE
RATE = (DELNRM/OLDNRM)**(1.0D0/M)
IF (RATE .GT. 0.9D0) GO TO 380
S = RATE/(1.0D0 - RATE)
ENDIF
IF (S*DELNRM .LE. EPCON) GO TO 370
C
C The corrector has not yet converged. Update M and test whether
C the maximum number of iterations have been tried.
C
M = M + 1
IF (M .GE. MAXIT) GO TO 380
C
C Evaluate the residual, and go back to do another iteration.
C
IWM(LNRE) = IWM(LNRE) + 1
CALL RES(X,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
GO TO 300
C
C The iteration has converged.
C
370 RETURN
C
C The iteration has not converged. Set IERNEW appropriately.
C
380 CONTINUE
IF (IRES .LE. -2 .OR. IERSL .LT. 0) THEN
IERNEW = -1
ELSE
IERNEW = 1
ENDIF
RETURN
C
C
C------END OF SUBROUTINE DNSK-------------------------------------------
END
SUBROUTINE DSLVK (NEQ, Y, TN, YPRIME, SAVR, X, EWT, WM, IWM,
* RES, IRES, PSOL, IERSL, CJ, EPLIN, SQRTN, RSQRTN, RHOK,
* RPAR, IPAR)
C
C***BEGIN PROLOGUE DSLVK
C***REFER TO DDASPK
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940928 Removed MNEWT and added RHOK in call list.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C DSLVK uses a restart algorithm and interfaces to DSPIGM for
C the solution of the linear system arising from a Newton iteration.
C
C In addition to variables described elsewhere,
C communication with DSLVK uses the following variables..
C WM = Real work space containing data for the algorithm
C (Krylov basis vectors, Hessenberg matrix, etc.).
C IWM = Integer work space containing data for the algorithm.
C X = The right-hand side vector on input, and the solution vector
C on output, of length NEQ.
C IRES = Error flag from RES.
C IERSL = Output flag ..
C IERSL = 0 means no trouble occurred (or user RES routine
C returned IRES < 0)
C IERSL = 1 means the iterative method failed to converge
C (DSPIGM returned IFLAG > 0.)
C IERSL = -1 means there was a nonrecoverable error in the
C iterative solver, and an error exit will occur.
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DSCAL, DCOPY, DSPIGM
C
C***END PROLOGUE DSLVK
C
INTEGER NEQ, IWM, IRES, IERSL, IPAR
DOUBLE PRECISION Y, TN, YPRIME, SAVR, X, EWT, WM, CJ, EPLIN,
1 SQRTN, RSQRTN, RHOK, RPAR
DIMENSION Y(*), YPRIME(*), SAVR(*), X(*), EWT(*),
1 WM(*), IWM(*), RPAR(*), IPAR(*)
C
INTEGER IFLAG, IRST, NRSTS, NRMAX, LR, LDL, LHES, LGMR, LQ, LV,
1 LWK, LZ, MAXLP1, NPSL
INTEGER NLI, NPS, NCFL, NRE, MAXL, KMP, MITER
EXTERNAL RES, PSOL
C
PARAMETER (LNRE=12, LNCFL=16, LNLI=20, LNPS=21)
PARAMETER (LLOCWP=29, LLCIWP=30)
PARAMETER (LMITER=23, LMAXL=24, LKMP=25, LNRMAX=26)
C
C-----------------------------------------------------------------------
C IRST is set to 1, to indicate restarting is in effect.
C NRMAX is the maximum number of restarts.
C-----------------------------------------------------------------------
DATA IRST/1/
C
LIWP = IWM(LLCIWP)
NLI = IWM(LNLI)
NPS = IWM(LNPS)
NCFL = IWM(LNCFL)
NRE = IWM(LNRE)
LWP = IWM(LLOCWP)
MAXL = IWM(LMAXL)
KMP = IWM(LKMP)
NRMAX = IWM(LNRMAX)
MITER = IWM(LMITER)
IERSL = 0
IRES = 0
C-----------------------------------------------------------------------
C Use a restarting strategy to solve the linear system
C P*X = -F. Parse the work vector, and perform initializations.
C Note that zero is the initial guess for X.
C-----------------------------------------------------------------------
MAXLP1 = MAXL + 1
LV = 1
LR = LV + NEQ*MAXL
LHES = LR + NEQ + 1
LQ = LHES + MAXL*MAXLP1
LWK = LQ + 2*MAXL
LDL = LWK + MIN0(1,MAXL-KMP)*NEQ
LZ = LDL + NEQ
CALL DSCAL (NEQ, RSQRTN, EWT, 1)
CALL DCOPY (NEQ, X, 1, WM(LR), 1)
DO 110 I = 1,NEQ
110 X(I) = 0.D0
C-----------------------------------------------------------------------
C Top of loop for the restart algorithm. Initial pass approximates
C X and sets up a transformed system to perform subsequent restarts
C to update X. NRSTS is initialized to -1, because restarting
C does not occur until after the first pass.
C Update NRSTS; conditionally copy DL to R; call the DSPIGM
C algorithm to solve A*Z = R; updated counters; update X with
C the residual solution.
C Note: if convergence is not achieved after NRMAX restarts,
C then the linear solver is considered to have failed.
C-----------------------------------------------------------------------
NRSTS = -1
115 CONTINUE
NRSTS = NRSTS + 1
IF (NRSTS .GT. 0) CALL DCOPY (NEQ, WM(LDL), 1, WM(LR),1)
CALL DSPIGM (NEQ, TN, Y, YPRIME, SAVR, WM(LR), EWT, MAXL, MAXLP1,
1 KMP, EPLIN, CJ, RES, IRES, NRES, PSOL, NPSL, WM(LZ), WM(LV),
2 WM(LHES), WM(LQ), LGMR, WM(LWP), IWM(LIWP), WM(LWK),
3 WM(LDL), RHOK, IFLAG, IRST, NRSTS, RPAR, IPAR)
NLI = NLI + LGMR
NPS = NPS + NPSL
NRE = NRE + NRES
DO 120 I = 1,NEQ
120 X(I) = X(I) + WM(LZ+I-1)
IF ((IFLAG .EQ. 1) .AND. (NRSTS .LT. NRMAX) .AND. (IRES .EQ. 0))
1 GO TO 115
C-----------------------------------------------------------------------
C The restart scheme is finished. Test IRES and IFLAG to see if
C convergence was not achieved, and set flags accordingly.
C-----------------------------------------------------------------------
IF (IRES .LT. 0) THEN
NCFL = NCFL + 1
ELSE IF (IFLAG .NE. 0) THEN
NCFL = NCFL + 1
IF (IFLAG .GT. 0) IERSL = 1
IF (IFLAG .LT. 0) IERSL = -1
ENDIF
C-----------------------------------------------------------------------
C Update IWM with counters, rescale EWT, and return.
C-----------------------------------------------------------------------
IWM(LNLI) = NLI
IWM(LNPS) = NPS
IWM(LNCFL) = NCFL
IWM(LNRE) = NRE
CALL DSCAL (NEQ, SQRTN, EWT, 1)
RETURN
C
C------END OF SUBROUTINE DSLVK------------------------------------------
END
SUBROUTINE DSPIGM (NEQ, TN, Y, YPRIME, SAVR, R, WGHT, MAXL,
* MAXLP1, KMP, EPLIN, CJ, RES, IRES, NRE, PSOL, NPSL, Z, V,
* HES, Q, LGMR, WP, IWP, WK, DL, RHOK, IFLAG, IRST, NRSTS,
* RPAR, IPAR)
C
C***BEGIN PROLOGUE DSPIGM
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C***REVISION DATE 940927 Removed MNEWT and added RHOK in call list.
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine solves the linear system A * Z = R using a scaled
C preconditioned version of the generalized minimum residual method.
C An initial guess of Z = 0 is assumed.
C
C On entry
C
C NEQ = Problem size, passed to PSOL.
C
C TN = Current Value of T.
C
C Y = Array Containing current dependent variable vector.
C
C YPRIME = Array Containing current first derivative of Y.
C
C SAVR = Array containing current value of G(T,Y,YPRIME).
C
C R = The right hand side of the system A*Z = R.
C R is also used as work space when computing
C the final approximation and will therefore be
C destroyed.
C (R is the same as V(*,MAXL+1) in the call to DSPIGM.)
C
C WGHT = The vector of length NEQ containing the nonzero
C elements of the diagonal scaling matrix.
C
C MAXL = The maximum allowable order of the matrix H.
C
C MAXLP1 = MAXL + 1, used for dynamic dimensioning of HES.
C
C KMP = The number of previous vectors the new vector, VNEW,
C must be made orthogonal to. (KMP .LE. MAXL.)
C
C EPLIN = Tolerance on residuals R-A*Z in weighted rms norm.
C
C CJ = Scalar proportional to current value of
C 1/(step size H).
C
C WK = Real work array used by routine DATV and PSOL.
C
C DL = Real work array used for calculation of the residual
C norm RHO when the method is incomplete (KMP.LT.MAXL)
C and/or when using restarting.
C
C WP = Real work array used by preconditioner PSOL.
C
C IWP = Integer work array used by preconditioner PSOL.
C
C IRST = Method flag indicating if restarting is being
C performed. IRST .GT. 0 means restarting is active,
C while IRST = 0 means restarting is not being used.
C
C NRSTS = Counter for the number of restarts on the current
C call to DSPIGM. If NRSTS .GT. 0, then the residual
C R is already scaled, and so scaling of R is not
C necessary.
C
C
C On Return
C
C Z = The final computed approximation to the solution
C of the system A*Z = R.
C
C LGMR = The number of iterations performed and
C the current order of the upper Hessenberg
C matrix HES.
C
C NRE = The number of calls to RES (i.e. DATV)
C
C NPSL = The number of calls to PSOL.
C
C V = The neq by (LGMR+1) array containing the LGMR
C orthogonal vectors V(*,1) to V(*,LGMR).
C
C HES = The upper triangular factor of the QR decomposition
C of the (LGMR+1) by LGMR upper Hessenberg matrix whose
C entries are the scaled inner-products of A*V(*,I)
C and V(*,K).
C
C Q = Real array of length 2*MAXL containing the components
C of the givens rotations used in the QR decomposition
C of HES. It is loaded in DHEQR and used in DHELS.
C
C IRES = Error flag from RES.
C
C DL = Scaled preconditioned residual,
C (D-inverse)*(P-inverse)*(R-A*Z). Only loaded when
C performing restarts of the Krylov iteration.
C
C RHOK = Weighted norm of final preconditioned residual.
C
C IFLAG = Integer error flag..
C 0 Means convergence in LGMR iterations, LGMR.LE.MAXL.
C 1 Means the convergence test did not pass in MAXL
C iterations, but the new residual norm (RHO) is
C .LT. the old residual norm (RNRM), and so Z is
C computed.
C 2 Means the convergence test did not pass in MAXL
C iterations, new residual norm (RHO) .GE. old residual
C norm (RNRM), and the initial guess, Z = 0, is
C returned.
C 3 Means there was a recoverable error in PSOL
C caused by the preconditioner being out of date.
C -1 Means there was an unrecoverable error in PSOL.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C PSOL, DNRM2, DSCAL, DATV, DORTH, DHEQR, DCOPY, DHELS, DAXPY
C
C***END PROLOGUE DSPIGM
C
INTEGER NEQ,MAXL,MAXLP1,KMP,IRES,NRE,NPSL,LGMR,IWP,
1 IFLAG,IRST,NRSTS,IPAR
DOUBLE PRECISION TN,Y,YPRIME,SAVR,R,WGHT,EPLIN,CJ,Z,V,HES,Q,WP,WK,
1 DL,RHOK,RPAR
DIMENSION Y(*), YPRIME(*), SAVR(*), R(*), WGHT(*), Z(*),
1 V(NEQ,*), HES(MAXLP1,*), Q(*), WP(*), IWP(*), WK(*), DL(*),
2 RPAR(*), IPAR(*)
INTEGER I, IER, INFO, IP1, I2, J, K, LL, LLP1
DOUBLE PRECISION RNRM,C,DLNRM,PROD,RHO,S,SNORMW,DNRM2,TEM
EXTERNAL RES, PSOL
C
IER = 0
IFLAG = 0
LGMR = 0
NPSL = 0
NRE = 0
C-----------------------------------------------------------------------
C The initial guess for Z is 0. The initial residual is therefore
C the vector R. Initialize Z to 0.
C-----------------------------------------------------------------------
DO 10 I = 1,NEQ
10 Z(I) = 0.0D0
C-----------------------------------------------------------------------
C Apply inverse of left preconditioner to vector R if NRSTS .EQ. 0.
C Form V(*,1), the scaled preconditioned right hand side.
C-----------------------------------------------------------------------
IF (NRSTS .EQ. 0) THEN
CALL PSOL (NEQ, TN, Y, YPRIME, SAVR, WK, CJ, WGHT, WP, IWP,
1 R, EPLIN, IER, RPAR, IPAR)
NPSL = 1
IF (IER .NE. 0) GO TO 300
DO 30 I = 1,NEQ
30 V(I,1) = R(I)*WGHT(I)
ELSE
DO 35 I = 1,NEQ
35 V(I,1) = R(I)
ENDIF
C-----------------------------------------------------------------------
C Calculate norm of scaled vector V(*,1) and normalize it
C If, however, the norm of V(*,1) (i.e. the norm of the preconditioned
C residual) is .le. EPLIN, then return with Z=0.
C-----------------------------------------------------------------------
RNRM = DNRM2 (NEQ, V, 1)
IF (RNRM .LE. EPLIN) THEN
RHOK = RNRM
RETURN
ENDIF
TEM = 1.0D0/RNRM
CALL DSCAL (NEQ, TEM, V(1,1), 1)
C-----------------------------------------------------------------------
C Zero out the HES array.
C-----------------------------------------------------------------------
DO 65 J = 1,MAXL
DO 60 I = 1,MAXLP1
60 HES(I,J) = 0.0D0
65 CONTINUE
C-----------------------------------------------------------------------
C Main loop to compute the vectors V(*,2) to V(*,MAXL).
C The running product PROD is needed for the convergence test.
C-----------------------------------------------------------------------
PROD = 1.0D0
DO 90 LL = 1,MAXL
LGMR = LL
C-----------------------------------------------------------------------
C Call routine DATV to compute VNEW = ABAR*V(LL), where ABAR is
C the matrix A with scaling and inverse preconditioner factors applied.
C Call routine DORTH to orthogonalize the new vector VNEW = V(*,LL+1).
C call routine DHEQR to update the factors of HES.
C-----------------------------------------------------------------------
CALL DATV (NEQ, Y, TN, YPRIME, SAVR, V(1,LL), WGHT, Z,
1 RES, IRES, PSOL, V(1,LL+1), WK, WP, IWP, CJ, EPLIN,
1 IER, NRE, NPSL, RPAR, IPAR)
IF (IRES .LT. 0) RETURN
IF (IER .NE. 0) GO TO 300
CALL DORTH (V(1,LL+1), V, HES, NEQ, LL, MAXLP1, KMP, SNORMW)
HES(LL+1,LL) = SNORMW
CALL DHEQR (HES, MAXLP1, LL, Q, INFO, LL)
IF (INFO .EQ. LL) GO TO 120
C-----------------------------------------------------------------------
C Update RHO, the estimate of the norm of the residual R - A*ZL.
C If KMP .LT. MAXL, then the vectors V(*,1),...,V(*,LL+1) are not
C necessarily orthogonal for LL .GT. KMP. The vector DL must then
C be computed, and its norm used in the calculation of RHO.
C-----------------------------------------------------------------------
PROD = PROD*Q(2*LL)
RHO = ABS(PROD*RNRM)
IF ((LL.GT.KMP) .AND. (KMP.LT.MAXL)) THEN
IF (LL .EQ. KMP+1) THEN
CALL DCOPY (NEQ, V(1,1), 1, DL, 1)
DO 75 I = 1,KMP
IP1 = I + 1
I2 = I*2
S = Q(I2)
C = Q(I2-1)
DO 70 K = 1,NEQ
70 DL(K) = S*DL(K) + C*V(K,IP1)
75 CONTINUE
ENDIF
S = Q(2*LL)
C = Q(2*LL-1)/SNORMW
LLP1 = LL + 1
DO 80 K = 1,NEQ
80 DL(K) = S*DL(K) + C*V(K,LLP1)
DLNRM = DNRM2 (NEQ, DL, 1)
RHO = RHO*DLNRM
ENDIF
C-----------------------------------------------------------------------
C Test for convergence. If passed, compute approximation ZL.
C If failed and LL .LT. MAXL, then continue iterating.
C-----------------------------------------------------------------------
IF (RHO .LE. EPLIN) GO TO 200
IF (LL .EQ. MAXL) GO TO 100
C-----------------------------------------------------------------------
C Rescale so that the norm of V(1,LL+1) is one.
C-----------------------------------------------------------------------
TEM = 1.0D0/SNORMW
CALL DSCAL (NEQ, TEM, V(1,LL+1), 1)
90 CONTINUE
100 CONTINUE
IF (RHO .LT. RNRM) GO TO 150
120 CONTINUE
IFLAG = 2
DO 130 I = 1,NEQ
130 Z(I) = 0.D0
RETURN
150 IFLAG = 1
C-----------------------------------------------------------------------
C The tolerance was not met, but the residual norm was reduced.
C If performing restarting (IRST .gt. 0) calculate the residual vector
C RL and store it in the DL array. If the incomplete version is
C being used (KMP .lt. MAXL) then DL has already been calculated.
C-----------------------------------------------------------------------
IF (IRST .GT. 0) THEN
IF (KMP .EQ. MAXL) THEN
C
C Calculate DL from the V(I)'s.
C
CALL DCOPY (NEQ, V(1,1), 1, DL, 1)
MAXLM1 = MAXL - 1
DO 175 I = 1,MAXLM1
IP1 = I + 1
I2 = I*2
S = Q(I2)
C = Q(I2-1)
DO 170 K = 1,NEQ
170 DL(K) = S*DL(K) + C*V(K,IP1)
175 CONTINUE
S = Q(2*MAXL)
C = Q(2*MAXL-1)/SNORMW
DO 180 K = 1,NEQ
180 DL(K) = S*DL(K) + C*V(K,MAXLP1)
ENDIF
C
C Scale DL by RNRM*PROD to obtain the residual RL.
C
TEM = RNRM*PROD
CALL DSCAL(NEQ, TEM, DL, 1)
ENDIF
C-----------------------------------------------------------------------
C Compute the approximation ZL to the solution.
C Since the vector Z was used as work space, and the initial guess
C of the Newton correction is zero, Z must be reset to zero.
C-----------------------------------------------------------------------
200 CONTINUE
LL = LGMR
LLP1 = LL + 1
DO 210 K = 1,LLP1
210 R(K) = 0.0D0
R(1) = RNRM
CALL DHELS (HES, MAXLP1, LL, Q, R)
DO 220 K = 1,NEQ
220 Z(K) = 0.0D0
DO 230 I = 1,LL
CALL DAXPY (NEQ, R(I), V(1,I), 1, Z, 1)
230 CONTINUE
DO 240 I = 1,NEQ
240 Z(I) = Z(I)/WGHT(I)
C Load RHO into RHOK.
RHOK = RHO
RETURN
C-----------------------------------------------------------------------
C This block handles error returns forced by routine PSOL.
C-----------------------------------------------------------------------
300 CONTINUE
IF (IER .LT. 0) IFLAG = -1
IF (IER .GT. 0) IFLAG = 3
C
RETURN
C
C------END OF SUBROUTINE DSPIGM-----------------------------------------
END
SUBROUTINE DATV (NEQ, Y, TN, YPRIME, SAVR, V, WGHT, YPTEM, RES,
* IRES, PSOL, Z, VTEM, WP, IWP, CJ, EPLIN, IER, NRE, NPSL,
* RPAR,IPAR)
C
C***BEGIN PROLOGUE DATV
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine computes the product
C
C Z = (D-inverse)*(P-inverse)*(dF/dY)*(D*V),
C
C where F(Y) = G(T, Y, CJ*(Y-A)), CJ is a scalar proportional to 1/H,
C and A involves the past history of Y. The quantity CJ*(Y-A) is
C an approximation to the first derivative of Y and is stored
C in the array YPRIME. Note that dF/dY = dG/dY + CJ*dG/dYPRIME.
C
C D is a diagonal scaling matrix, and P is the left preconditioning
C matrix. V is assumed to have L2 norm equal to 1.
C The product is stored in Z and is computed by means of a
C difference quotient, a call to RES, and one call to PSOL.
C
C On entry
C
C NEQ = Problem size, passed to RES and PSOL.
C
C Y = Array containing current dependent variable vector.
C
C YPRIME = Array containing current first derivative of y.
C
C SAVR = Array containing current value of G(T,Y,YPRIME).
C
C V = Real array of length NEQ (can be the same array as Z).
C
C WGHT = Array of length NEQ containing scale factors.
C 1/WGHT(I) are the diagonal elements of the matrix D.
C
C YPTEM = Work array of length NEQ.
C
C VTEM = Work array of length NEQ used to store the
C unscaled version of V.
C
C WP = Real work array used by preconditioner PSOL.
C
C IWP = Integer work array used by preconditioner PSOL.
C
C CJ = Scalar proportional to current value of
C 1/(step size H).
C
C
C On return
C
C Z = Array of length NEQ containing desired scaled
C matrix-vector product.
C
C IRES = Error flag from RES.
C
C IER = Error flag from PSOL.
C
C NRE = The number of calls to RES.
C
C NPSL = The number of calls to PSOL.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C RES, PSOL
C
C***END PROLOGUE DATV
C
INTEGER NEQ, IRES, IWP, IER, NRE, NPSL, IPAR
DOUBLE PRECISION Y, TN, YPRIME, SAVR, V, WGHT, YPTEM, Z, VTEM,
1 WP, CJ, RPAR
DIMENSION Y(*), YPRIME(*), SAVR(*), V(*), WGHT(*), YPTEM(*),
1 Z(*), VTEM(*), WP(*), IWP(*), RPAR(*), IPAR(*)
INTEGER I
DOUBLE PRECISION EPLIN
EXTERNAL RES, PSOL
C
IRES = 0
C-----------------------------------------------------------------------
C Set VTEM = D * V.
C-----------------------------------------------------------------------
DO 10 I = 1,NEQ
10 VTEM(I) = V(I)/WGHT(I)
IER = 0
C-----------------------------------------------------------------------
C Store Y in Z and increment Z by VTEM.
C Store YPRIME in YPTEM and increment YPTEM by VTEM*CJ.
C-----------------------------------------------------------------------
DO 20 I = 1,NEQ
YPTEM(I) = YPRIME(I) + VTEM(I)*CJ
20 Z(I) = Y(I) + VTEM(I)
C-----------------------------------------------------------------------
C Call RES with incremented Y, YPRIME arguments
C stored in Z, YPTEM. VTEM is overwritten with new residual.
C-----------------------------------------------------------------------
CONTINUE
CALL RES(TN,Z,YPTEM,CJ,VTEM,IRES,RPAR,IPAR)
NRE = NRE + 1
IF (IRES .LT. 0) RETURN
C-----------------------------------------------------------------------
C Set Z = (dF/dY) * VBAR using difference quotient.
C (VBAR is old value of VTEM before calling RES)
C-----------------------------------------------------------------------
DO 70 I = 1,NEQ
70 Z(I) = VTEM(I) - SAVR(I)
C-----------------------------------------------------------------------
C Apply inverse of left preconditioner to Z.
C-----------------------------------------------------------------------
CALL PSOL (NEQ, TN, Y, YPRIME, SAVR, YPTEM, CJ, WGHT, WP, IWP,
1 Z, EPLIN, IER, RPAR, IPAR)
NPSL = NPSL + 1
IF (IER .NE. 0) RETURN
C-----------------------------------------------------------------------
C Apply D-inverse to Z and return.
C-----------------------------------------------------------------------
DO 90 I = 1,NEQ
90 Z(I) = Z(I)*WGHT(I)
RETURN
C
C------END OF SUBROUTINE DATV-------------------------------------------
END
SUBROUTINE DORTH (VNEW, V, HES, N, LL, LDHES, KMP, SNORMW)
C
C***BEGIN PROLOGUE DORTH
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine orthogonalizes the vector VNEW against the previous
C KMP vectors in the V array. It uses a modified Gram-Schmidt
C orthogonalization procedure with conditional reorthogonalization.
C
C On entry
C
C VNEW = The vector of length N containing a scaled product
C OF The Jacobian and the vector V(*,LL).
C
C V = The N x LL array containing the previous LL
C orthogonal vectors V(*,1) to V(*,LL).
C
C HES = An LL x LL upper Hessenberg matrix containing,
C in HES(I,K), K.LT.LL, scaled inner products of
C A*V(*,K) and V(*,I).
C
C LDHES = The leading dimension of the HES array.
C
C N = The order of the matrix A, and the length of VNEW.
C
C LL = The current order of the matrix HES.
C
C KMP = The number of previous vectors the new vector VNEW
C must be made orthogonal to (KMP .LE. MAXL).
C
C
C On return
C
C VNEW = The new vector orthogonal to V(*,I0),
C where I0 = MAX(1, LL-KMP+1).
C
C HES = Upper Hessenberg matrix with column LL filled in with
C scaled inner products of A*V(*,LL) and V(*,I).
C
C SNORMW = L-2 norm of VNEW.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DDOT, DNRM2, DAXPY
C
C***END PROLOGUE DORTH
C
INTEGER N, LL, LDHES, KMP
DOUBLE PRECISION VNEW, V, HES, SNORMW
DIMENSION VNEW(*), V(N,*), HES(LDHES,*)
INTEGER I, I0
DOUBLE PRECISION ARG, DDOT, DNRM2, SUMDSQ, TEM, VNRM
C
C-----------------------------------------------------------------------
C Get norm of unaltered VNEW for later use.
C-----------------------------------------------------------------------
VNRM = DNRM2 (N, VNEW, 1)
C-----------------------------------------------------------------------
C Do Modified Gram-Schmidt on VNEW = A*V(LL).
C Scaled inner products give new column of HES.
C Projections of earlier vectors are subtracted from VNEW.
C-----------------------------------------------------------------------
I0 = MAX0(1,LL-KMP+1)
DO 10 I = I0,LL
HES(I,LL) = DDOT (N, V(1,I), 1, VNEW, 1)
TEM = -HES(I,LL)
CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1)
10 CONTINUE
C-----------------------------------------------------------------------
C Compute SNORMW = norm of VNEW.
C If VNEW is small compared to its input value (in norm), then
C Reorthogonalize VNEW to V(*,1) through V(*,LL).
C Correct if relative correction exceeds 1000*(unit roundoff).
C Finally, correct SNORMW using the dot products involved.
C-----------------------------------------------------------------------
SNORMW = DNRM2 (N, VNEW, 1)
IF (VNRM + 0.001D0*SNORMW .NE. VNRM) RETURN
SUMDSQ = 0.0D0
DO 30 I = I0,LL
TEM = -DDOT (N, V(1,I), 1, VNEW, 1)
IF (HES(I,LL) + 0.001D0*TEM .EQ. HES(I,LL)) GO TO 30
HES(I,LL) = HES(I,LL) - TEM
CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1)
SUMDSQ = SUMDSQ + TEM**2
30 CONTINUE
IF (SUMDSQ .EQ. 0.0D0) RETURN
ARG = MAX(0.0D0,SNORMW**2 - SUMDSQ)
SNORMW = SQRT(ARG)
RETURN
C
C------END OF SUBROUTINE DORTH------------------------------------------
END
SUBROUTINE DHEQR (A, LDA, N, Q, INFO, IJOB)
C
C***BEGIN PROLOGUE DHEQR
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This routine performs a QR decomposition of an upper
C Hessenberg matrix A. There are two options available:
C
C (1) performing a fresh decomposition
C (2) updating the QR factors by adding a row and A
C column to the matrix A.
C
C DHEQR decomposes an upper Hessenberg matrix by using Givens
C rotations.
C
C On entry
C
C A DOUBLE PRECISION(LDA, N)
C The matrix to be decomposed.
C
C LDA INTEGER
C The leading dimension of the array A.
C
C N INTEGER
C A is an (N+1) by N Hessenberg matrix.
C
C IJOB INTEGER
C = 1 Means that a fresh decomposition of the
C matrix A is desired.
C .GE. 2 Means that the current decomposition of A
C will be updated by the addition of a row
C and a column.
C On return
C
C A The upper triangular matrix R.
C The factorization can be written Q*A = R, where
C Q is a product of Givens rotations and R is upper
C triangular.
C
C Q DOUBLE PRECISION(2*N)
C The factors C and S of each Givens rotation used
C in decomposing A.
C
C INFO INTEGER
C = 0 normal value.
C = K If A(K,K) .EQ. 0.0. This is not an error
C condition for this subroutine, but it does
C indicate that DHELS will divide by zero
C if called.
C
C Modification of LINPACK.
C Peter Brown, Lawrence Livermore Natl. Lab.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED (NONE)
C
C***END PROLOGUE DHEQR
C
INTEGER LDA, N, INFO, IJOB
DOUBLE PRECISION A(LDA,*), Q(*)
INTEGER I, IQ, J, K, KM1, KP1, NM1
DOUBLE PRECISION C, S, T, T1, T2
C
IF (IJOB .GT. 1) GO TO 70
C-----------------------------------------------------------------------
C A new factorization is desired.
C-----------------------------------------------------------------------
C
C QR decomposition without pivoting.
C
INFO = 0
DO 60 K = 1, N
KM1 = K - 1
KP1 = K + 1
C
C Compute Kth column of R.
C First, multiply the Kth column of A by the previous
C K-1 Givens rotations.
C
IF (KM1 .LT. 1) GO TO 20
DO 10 J = 1, KM1
I = 2*(J-1) + 1
T1 = A(J,K)
T2 = A(J+1,K)
C = Q(I)
S = Q(I+1)
A(J,K) = C*T1 - S*T2
A(J+1,K) = S*T1 + C*T2
10 CONTINUE
C
C Compute Givens components C and S.
C
20 CONTINUE
IQ = 2*KM1 + 1
T1 = A(K,K)
T2 = A(KP1,K)
IF (T2 .NE. 0.0D0) GO TO 30
C = 1.0D0
S = 0.0D0
GO TO 50
30 CONTINUE
IF (ABS(T2) .LT. ABS(T1)) GO TO 40
T = T1/T2
S = -1.0D0/SQRT(1.0D0+T*T)
C = -S*T
GO TO 50
40 CONTINUE
T = T2/T1
C = 1.0D0/SQRT(1.0D0+T*T)
S = -C*T
50 CONTINUE
Q(IQ) = C
Q(IQ+1) = S
A(K,K) = C*T1 - S*T2
IF (A(K,K) .EQ. 0.0D0) INFO = K
60 CONTINUE
RETURN
C-----------------------------------------------------------------------
C The old factorization of A will be updated. A row and a column
C has been added to the matrix A.
C N by N-1 is now the old size of the matrix.
C-----------------------------------------------------------------------
70 CONTINUE
NM1 = N - 1
C-----------------------------------------------------------------------
C Multiply the new column by the N previous Givens rotations.
C-----------------------------------------------------------------------
DO 100 K = 1,NM1
I = 2*(K-1) + 1
T1 = A(K,N)
T2 = A(K+1,N)
C = Q(I)
S = Q(I+1)
A(K,N) = C*T1 - S*T2
A(K+1,N) = S*T1 + C*T2
100 CONTINUE
C-----------------------------------------------------------------------
C Complete update of decomposition by forming last Givens rotation,
C and multiplying it times the column vector (A(N,N),A(NP1,N)).
C-----------------------------------------------------------------------
INFO = 0
T1 = A(N,N)
T2 = A(N+1,N)
IF (T2 .NE. 0.0D0) GO TO 110
C = 1.0D0
S = 0.0D0
GO TO 130
110 CONTINUE
IF (ABS(T2) .LT. ABS(T1)) GO TO 120
T = T1/T2
S = -1.0D0/SQRT(1.0D0+T*T)
C = -S*T
GO TO 130
120 CONTINUE
T = T2/T1
C = 1.0D0/SQRT(1.0D0+T*T)
S = -C*T
130 CONTINUE
IQ = 2*N - 1
Q(IQ) = C
Q(IQ+1) = S
A(N,N) = C*T1 - S*T2
IF (A(N,N) .EQ. 0.0D0) INFO = N
RETURN
C
C------END OF SUBROUTINE DHEQR------------------------------------------
END
SUBROUTINE DHELS (A, LDA, N, Q, B)
C
C***BEGIN PROLOGUE DHELS
C***DATE WRITTEN 890101 (YYMMDD)
C***REVISION DATE 900926 (YYMMDD)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C This is similar to the LINPACK routine DGESL except that
C A is an upper Hessenberg matrix.
C
C DHELS solves the least squares problem
C
C MIN (B-A*X,B-A*X)
C
C using the factors computed by DHEQR.
C
C On entry
C
C A DOUBLE PRECISION (LDA, N)
C The output from DHEQR which contains the upper
C triangular factor R in the QR decomposition of A.
C
C LDA INTEGER
C The leading dimension of the array A .
C
C N INTEGER
C A is originally an (N+1) by N matrix.
C
C Q DOUBLE PRECISION(2*N)
C The coefficients of the N givens rotations
C used in the QR factorization of A.
C
C B DOUBLE PRECISION(N+1)
C The right hand side vector.
C
C
C On return
C
C B The solution vector X.
C
C
C Modification of LINPACK.
C Peter Brown, Lawrence Livermore Natl. Lab.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C DAXPY
C
C***END PROLOGUE DHELS
C
INTEGER LDA, N
DOUBLE PRECISION A(LDA,*), B(*), Q(*)
INTEGER IQ, K, KB, KP1
DOUBLE PRECISION C, S, T, T1, T2
C
C Minimize (B-A*X,B-A*X).
C First form Q*B.
C
DO 20 K = 1, N
KP1 = K + 1
IQ = 2*(K-1) + 1
C = Q(IQ)
S = Q(IQ+1)
T1 = B(K)
T2 = B(KP1)
B(K) = C*T1 - S*T2
B(KP1) = S*T1 + C*T2
20 CONTINUE
C
C Now solve R*X = Q*B.
C
DO 40 KB = 1, N
K = N + 1 - KB
B(K) = B(K)/A(K,K)
T = -B(K)
CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1)
40 CONTINUE
RETURN
C
C------END OF SUBROUTINE DHELS------------------------------------------
END
c version 11-03-05: Masoud
c
c 1) Enhancement in masking demasking: removing the small
c integration in DRCHEK which was used to detect the
c detaching/ataching to zero => rename to DRCHEK2,
c
c 2) Adding adequate code to use analytic jacobian in DMATD
c
c
|