File: prja.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (174 lines) | stat: -rw-r--r-- 6,626 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
C/MEMBR ADD NAME=PRJA,SSI=0
      subroutine prja (neq, y, yh, nyh, ewt, ftem, savf, wm, iwm,
     1   f, jac)
clll. optimize
      external f, jac
      integer neq, nyh, iwm
      integer iownd, iowns,
     1   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     2   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
      integer iownd2, iowns2, jtyp, mused, mxordn, mxords
      integer i, i1, i2, ier, ii, j, j1, jj, lenp,
     1   mba, mband, meb1, meband, ml, ml3, mu
      double precision y, yh, ewt, ftem, savf, wm
      double precision rownd, rowns,
     1   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
      double precision rownd2, rowns2, pdnorm
      double precision con, fac, hl0, r, r0, srur, yi, yj, yjj,
     1   vmnorm, fnorm, bnorm
      dimension neq(*), y(*), yh(nyh,*), ewt(*), ftem(*), savf(*),
     1   wm(*), iwm(*)
      integer         iero
      common /ierode/ iero
      common /ls0001/ rownd, rowns(209),
     2   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
     3   iownd(14), iowns(6),
     4   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     5   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
      common /lsa001/ rownd2, rowns2(20), pdnorm,
     1   iownd2(3), iowns2(2), jtyp, mused, mxordn, mxords
c-----------------------------------------------------------------------
c%purpose
c prja is called by stoda to compute and process the matrix
c p = i - h*el(1)*j , where j is an approximation to the jacobian.
c here j is computed by the user-supplied routine jac if
c miter = 1 or 4 or by finite differencing if miter = 2 or 5.
c j, scaled by -h*el(1), is stored in wm.  then the norm of j (the
c matrix norm consistent with the weighted max-norm on vectors given
c by vmnorm) is computed, and j is overwritten by p.  p is then
c subjected to lu decomposition in preparation for later solution
c of linear systems with p as coefficient matrix. this is done
c by dgefa if miter = 1 or 2, and by dgbfa if miter = 4 or 5.
c
c%additional  parameters
c in addition to variables described previously, communication
c with prja uses the following..
c y     = array containing predicted values on entry.
c ftem  = work array of length n (acor in stoda).
c savf  = array containing f evaluated at predicted y.
c wm    = real work space for matrices.  on output it contains the
c         lu decomposition of p.
c         storage of matrix elements starts at wm(3).
c         wm also contains the following matrix-related data..
c         wm(1) = sqrt(uround), used in numerical jacobian increments.
c iwm   = integer work space containing pivot information, starting at
c         iwm(21).   iwm also contains the band parameters
c         ml = iwm(1) and mu = iwm(2) if miter is 4 or 5.
c el0   = el(1) (input).
c pdnorm= norm of jacobian matrix. (output).
c ierpj = output error flag,  = 0 if no trouble, .gt. 0 if
c         p matrix found to be singular.
c jcur  = output flag = 1 to indicate that the jacobian matrix
c         (or approximation) is now current.
c this routine also uses the common variables el0, h, tn, uround,
c miter, n, nfe, and nje.
c!
c-----------------------------------------------------------------------
      nje = nje + 1
      ierpj = 0
      jcur = 1
      hl0 = h*el0
      go to (100, 200, 300, 400, 500), miter
c if miter = 1, call jac and multiply by scalar. -----------------------
 100  lenp = n*n
      do 110 i = 1,lenp
 110    wm(i+2) = 0.0d+0
      call jac (neq, tn, y, 0, 0, wm(3), n)
      if(iero.gt.0) return
      con = -hl0
      do 120 i = 1,lenp
 120    wm(i+2) = wm(i+2)*con
      go to 240
c if miter = 2, make n calls to f to approximate j. --------------------
 200  fac = vmnorm (n, savf, ewt)
      r0 = 1000.0d+0*abs(h)*uround*dble(n)*fac
      if (r0 .eq. 0.0d+0) r0 = 1.0d+0
      srur = wm(1)
      j1 = 2
      do 230 j = 1,n
        yj = y(j)
        r = max(srur*abs(yj),r0/ewt(j))
        y(j) = y(j) + r
        fac = -hl0/r
        call f (neq, tn, y, ftem)
      if(iero.gt.0) return
        do 220 i = 1,n
 220      wm(i+j1) = (ftem(i) - savf(i))*fac
        y(j) = yj
        j1 = j1 + n
 230    continue
      nfe = nfe + n
 240  continue
c compute norm of jacobian. --------------------------------------------
      pdnorm = fnorm (n, wm(3), ewt)/abs(hl0)
c add identity matrix. -------------------------------------------------
      j = 3
      do 250 i = 1,n
        wm(j) = wm(j) + 1.0d+0
 250    j = j + (n + 1)
c do lu decomposition on p. --------------------------------------------
      call dgefa (wm(3), n, n, iwm(21), ier)
      if (ier .ne. 0) ierpj = 1
      return
c dummy block only, since miter is never 3 in this routine. ------------
 300  return
c if miter = 4, call jac and multiply by scalar. -----------------------
 400  ml = iwm(1)
      mu = iwm(2)
      ml3 = ml + 3
      mband = ml + mu + 1
      meband = mband + ml
      lenp = meband*n
      do 410 i = 1,lenp
 410    wm(i+2) = 0.0d+0
      call jac (neq, tn, y, ml, mu, wm(ml3), meband)
      if(iero.gt.0) return
      con = -hl0
      do 420 i = 1,lenp
 420    wm(i+2) = wm(i+2)*con
      go to 570
c if miter = 5, make mband calls to f to approximate j. ----------------
 500  ml = iwm(1)
      mu = iwm(2)
      mband = ml + mu + 1
      mba = min(mband,n)
      meband = mband + ml
      meb1 = meband - 1
      srur = wm(1)
      fac = vmnorm (n, savf, ewt)
      r0 = 1000.0d+0*abs(h)*uround*dble(n)*fac
      if (r0 .eq. 0.0d+0) r0 = 1.0d+0
      do 560 j = 1,mba
        do 530 i = j,n,mband
          yi = y(i)
          r = max(srur*abs(yi),r0/ewt(i))
 530      y(i) = y(i) + r
        call f (neq, tn, y, ftem)
      if(iero.gt.0) return
        do 550 jj = j,n,mband
          y(jj) = yh(jj,1)
          yjj = y(jj)
          r = max(srur*abs(yjj),r0/ewt(jj))
          fac = -hl0/r
          i1 = max(jj-mu,1)
          i2 = min(jj+ml,n)
          ii = jj*meb1 - ml + 2
          do 540 i = i1,i2
 540        wm(ii+i) = (ftem(i) - savf(i))*fac
 550      continue
 560    continue
      nfe = nfe + mba
 570  continue
c compute norm of jacobian. --------------------------------------------
      pdnorm = bnorm (n, wm(3), meband, ml, mu, ewt)/abs(hl0)
c add identity matrix. -------------------------------------------------
      ii = mband + 2
      do 580 i = 1,n
        wm(ii) = wm(ii) + 1.0d+0
 580    ii = ii + meband
c do lu decomposition of p. --------------------------------------------
      call dgbfa (wm(3), meband, n, ml, mu, iwm(21), ier)
      if (ier .ne. 0) ierpj = 1
      return
c----------------------- end of subroutine prja ------------------------
      end