1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
|
SUBROUTINE TWODQ(F,N,X,Y,TOL,ICLOSE,MAXTRI,MEVALS,RESULT,
* ERROR,NU,ND,NEVALS,IFLAG,DATA,IWORK)
C***BEGIN PROLOGUE TWODQ
C***DATE WRITTEN 840518 (YYMMDD)
C***REVISION DATE 840518 (YYMMDD)
C***CATEGORY NO. D1I
C***KEYWORDS QUADRATURE,TWO DIMENSIONAL,ADAPTIVE,CUBATURE
C***AUTHOR KAHANER,D.K.,N.B.S.
C RECHARD,O.W.,N.B.S.
C BARNHILL,ROBERT,UNIV. OF UTAH
C***PURPOSE To compute the two-dimensional integral of a function
C F over a region consisting of N triangles.
C***DESCRIPTION
C
C This subroutine computes the two-dimensional integral of a
C function F over a region consisting of N triangles.
C A total error estimate is obtained and compared with a
C tolerance - TOL - that is provided as input to the subroutine.
C The error tolerance is treated as either relative or absolute
C depending on the input value of IFLAG. A 'Local Quadrature
C Module' is applied to each input triangle and estimates of the
C total integral and the total error are computed. The local
C quadrature module is either subroutine LQM0 or subroutine
C LQM1 and the choice between them is determined by the
C value of the input variable ICLOSE.
C
C If the total error estimate exceeds the tolerance, the triangle
C with the largest absolute error is divided into two triangles
C by a median to its longest side. The local quadrature module
C is then applied to each of the subtriangles to obtain new
C estimates of the integral and the error. This process is
C repeated until either (1) the error tolerance is satisfied,
C (2) the number of triangles generated exceeds the input
C parameter MAXTRI, (3) the number of integrand evaluations
C exceeds the input parameter MEVALS, or (4) the subroutine
C senses that roundoff error is beginning to contaminate
C the result.
C
C The user must specify MAXTRI, the maximum number of triangles
C in the final triangulation of the region, and provide two
C storage arrays - DATA and IWORK - whose sizes are at least
C 9*MAXTRI and 2*MAXTRI respectively. The user must also
C specify MEVALS, the maximum number of function evaluations
C to be allowed. This number will be effective in limiting
C the computation only if it is less than 94*MAXTRI when LQM1
C is specified or 56*MAXTRI when LQM0 is specified.
C
C After the subroutine has returned to the calling program
C with output values, it can be called again with a smaller
C value of TOL and/or a different value of MEVALS. The tolerance
C can also be changed from relative to absolute
C or vice-versa by changing IFLAG. Unless
C the parameters NU and ND are reset to zero the subroutine
C will restart with the final set of triangles and output
C values from the previous call.
C
C ARGUMENTS:
C
C F function subprogram defining the integrand F(u,v);
C the actual name for F needs to be declared EXTERNAL
C by the calling program.
C
C N the number of input triangles.
C
C X a 3 by N array containing the abscissae of the vertices
C of the N triangles.
C
C Y a 3 by N array containing the ordinates of the vertices
C of the N triangles
C
C TOL the desired bound on the error. If IFLAG=0 on input,
C TOL is interpreted as a bound on the relative error;
C if IFLAG=1, the bound is on the absolute error.
C
C ICLOSE an integer parameter that determines the selection
C of LQM0 or LQM1. If ICLOSE=1 then LQM1 is used.
C Any other value of ICLOSE causes LQM0 to be used.
C LQM0 uses function values only at interior points of
C the triangle. LQM1 is usually more accurate than LQM0
C but involves evaluating the integrand at more points
C including some on the boundary of the triangle. It
C will usually be better to use LQM1 unless the integrand
C has singularities on the boundary of the triangle.
C
C MAXTRI The maximum number of triangles that are allowed
C to be generated by the computation.
C
C MEVALS The maximum number of function evaluations allowed.
C
C RESULT output of the estimate of the integral.
C
C ERROR output of the estimate of the absolute value of the
C total error.
C
C NU an integer variable used for both input and output. Must
C be set to 0 on first call of the subroutine. Subsequent
C calls to restart the subroutine should use the previous
C output value.
C
C ND an integer variable used for both input and output. Must
C be set to 0 on first call of the subroutine. Subsequent
C calls to restart the subroutine should use the previous
C output value.
C
C NEVALS The actual number of function evaluations performed.
C
C IFLAG on input:
C IFLAG=0 means TOL is a bound on the relative error;
C IFLAG=1 means TOL is a bound on the absolute error;
C any other input value for IFLAG causes the subroutine
C to return immediately with IFLAG set equal to 9.
C
C on output:
C IFLAG=0 means normal termination;
C IFLAG=1 means termination for lack of space to divide
C another triangle;
C IFLAG=2 means termination because of roundoff noise
C IFLAG=3 means termination with relative error <=
C 5.0* machine epsilon;
C IFLAG=4 means termination because the number of function
C evaluations has exceeded MEVALS.
C IFLAG=9 means termination because of error in input flag
C
C DATA a one dimensional array of length >= 9*MAXTRI
C passed to the subroutine by the calling program. It is
C used by the subroutine to store information
C about triangles used in the quadrature.
C
C IWORK a one dimensional integer array of length >= 2*MAXTRI
C passed to the subroutine by the calling program.
C It is used by the subroutine to store pointers
C to the information in the DATA array.
C
C
C The information for each triangle is contained in a nine word
C record consisting of the error estimate, the estimate of the
C integral, the coordinates of the three vertices, and the area.
C These records are stored in the DATA array
C that is passed to the subroutine. The storage is organized
C into two heaps of length NU and ND respectively. The first heap
C contains those triangles for which the error exceeds
C epsabs*a/ATOT where epsabs is a bound on the absolute error
C derived from the input tolerance (which may refer to relative
C or absolute error), a is the area of the triangle, and ATOT
C is the total area of all triangles. The second heap contains
C those triangles for which the error is less than or equal to
C epsabs*a/ATOT. At the top of each heap is the triangle with
C the largest absolute error.
C
C Pointers into the heaps are contained in the array IWORK.
C Pointers to the first heap are contained
C between IWORK(1) and IWORK(NU). Pointers to the second
C heap are contained between IWORK(MAXTRI+1) and
C IWORK(MAXTRI+ND). The user thus has access to the records
C stored in the DATA array through the pointers in IWORK.
C For example, the following two DO loops will print out
C the records for each triangle in the two heaps:
C
C DO 10 I=1,NU
C PRINT*,(DATA(IWORK(I)+J),J=0,8)
C 10 CONTINUE
C DO 20 I=1,ND
C PRINT*,(DATA(IWORK(MAXTRI+I)+J),J=0,8
C 20 CONTINUE
C
C When the total number of triangles is equal to
C MAXTRI, the program attempts to remove a triangle from the
C bottom of the second heap and continue. If the second heap
C is empty, the program returns with the current estimates of
C the integral and the error and with IFLAG set equal to 1.
C Note that in this case the actual number of triangles
C processed may exceed MAXTRI and the triangles stored in
C the DATA array may not constitute a complete triangulation
C of the region.
C
C The following sample program will calculate the integral of
C cos(x+y) over the square (0.,0.),(1.,0.),(1.,1.),(0.,1.) and
C print out the values of the estimated integral, the estimated
C error, the number of function evaluations, and IFLAG.
C
C Double precision X(3,2),Y(3,2),DATA(450),RES,ERR
C INTEGER IWORK(100),NU,ND,NEVALS,IFLAG
C EXTERNAL F
C X(1,1)=0.
C Y(1,1)=0.
C X(2,1)=1.
C Y(2,1)=0.
C X(3,1)=1.
C Y(3,1)=1.
C X(1,2)=0.
C Y(1,2)=0.
C X(2,2)=1.
C Y(2,2)=1.
C X(3,2)=0.
C Y(3,2)=1.
C NU=0
C ND=0
C IFLAG=1
C CALL TWODQ(F,2,X,Y,1.D-04,1,50,4000,RES,ERR,NU,ND,
C * NEVALS,IFLAG,DATA,IWORK)
C PRINT*,RES,ERR,NEVALS,IFLAG
C END
C DOUBLE PRECISION FUNCTION F(X,Y)
C DOUBLE PRECISION X,Y
C F=COS(X+Y)
C RETURN
C END
C
C***REFERENCES (NONE)
C
C***ROUTINES CALLED HINITD,HINITU,HPACC,HPDEL,HPINS,LQM0,LQM1,
C TRIDV,DLAMCH
C***END PROLOGUE TWODQ
integer n,iflag,nevals,iclose,nu,nd,mevals,iwork(*),maxtri
double precision f,x(3,n),y(3,n),data(*),tol,result,error
integer rndcnt
logical full
double precision a,r,e,u(3),v(3),node(9),node1(9),node2(9),
* epsabs,EMACH,DLAMCH,ATOT,fadd,newres,newerr
external f,GREATR
common/iertwo/iero
save ATOT
EMACH=DLAMCH('p')
c
c If heaps are empty, apply LQM to each input triangle and
c place all of the data on the second heap.
c
if((nu+nd).eq.0) then
call HINITU(maxtri,9,nu,iwork)
call HINITD(maxtri,9,nd,iwork(maxtri+1))
ATOT=0.0
result=0.0
error=0.0
rndcnt=0
nevals=0
do 20 i=1,n
do 10 j=1,3
u(j)=x(j,i)
v(j)=y(j,i)
10 continue
a=0.5*abs(u(1)*v(2)+u(2)*v(3)+u(3)*v(1)
1 -u(1)*v(3)-u(2)*v(1)-u(3)*v(2))
ATOT=ATOT+a
if(iclose.eq.1) then
call LQM1(f,u,v,r,e)
if(iero.ne.0) return
nevals=nevals+47
else
call LQM0(f,u,v,r,e)
if(iero.ne.0) return
nevals=nevals+28
end if
result=result+r
error=error+e
node(1)=e
node(2)=r
node(3)=x(1,i)
node(4)=y(1,i)
node(5)=x(2,i)
node(6)=y(2,i)
node(7)=x(3,i)
node(8)=y(3,i)
node(9)=a
call HPINS(maxtri,9,data,nd,iwork(maxtri+1),node,GREATR)
20 continue
end if
c
c Check that input tolerance is consistent with
c machine epsilon.
c
if(iflag.eq.0) then
if(tol.le.5.0*EMACH) then
tol=5.0*EMACH
fadd=3
else
fadd=0
end if
epsabs=tol*abs(result)
else if(iflag.eq.1) then
if(tol.le.5.0*EMACH*abs(result)) then
epsabs=5.0*EMACH*abs(result)
else
fadd=0
epsabs=tol
end if
else
iflag=9
return
end if
c
c Adjust the second heap on the basis of the current
c value of epsabs.
c
2 if(nd.eq.0) go to 40
j=nd
3 if(j.eq.0) go to 40
call HPACC(maxtri,9,data,nd,iwork(maxtri+1),node,j)
if(node(1).gt.epsabs*node(9)/ATOT) then
call HPINS(maxtri,9,data,nu,iwork,node,GREATR)
call HPDEL(maxtri,9,data,nd,iwork(maxtri+1),GREATR,j)
if(j.gt.nd) j=j-1
else
j=j-1
endif
go to 3
c
c Beginning of main loop from here to end
c
40 if(nevals.ge.mevals) then
iflag=4
return
end if
if(error.le.epsabs) then
if(iflag.eq.0) then
if(error.le.abs(result)*tol) then
iflag=fadd
return
else
epsabs=abs(result)*tol
go to 2
end if
else
if(error.le.tol) then
iflag=0
return
else if(error.le.5.0*EMACH*abs(result)) then
iflag=3
return
else
epsabs=5.0*EMACH*abs(result)
go to 2
end if
end if
end if
c
c If there are too many triangles and second heap
c is not empty remove bottom triangle from second
c heap. If second heap is empty return with iflag
c set to 1 or 4.
c
if((nu+nd).ge.maxtri) then
full=.true.
if(nd.gt.0) then
iwork(nu+1)=iwork(maxtri+nd)
nd=nd-1
else
iflag=1
return
end if
else
full=.false.
end if
c
c Find triangle with largest error, divide it in
c two, and apply LQM to each half.
c
if(nd.eq.0) then
call HPACC(maxtri,9,data,nu,iwork,node,1)
call HPDEL(maxtri,9,data,nu,iwork,GREATR,1)
else if(nu.eq.0) then
call HPACC(maxtri,9,data,nd,iwork(maxtri+1),node,1)
call HPDEL(maxtri,9,data,nd,iwork(maxtri+1),GREATR,1)
else if(data(iwork(1)).ge.data(iwork(maxtri+1))) then
if(full) iwork(maxtri+nd+2)=iwork(nu)
call HPACC(maxtri,9,data,nu,iwork,node,1)
call HPDEL(maxtri,9,data,nu,iwork,GREATR,1)
else
if(full) iwork(nu+2)=iwork(maxtri+nd)
call HPACC(maxtri,9,data,nd,iwork(maxtri+1),node,1)
call HPDEL(maxtri,9,data,nd,iwork(maxtri+1),GREATR,1)
end if
call tridv(node,node1,node2,0.5d0,1)
do 60 j=1,3
u(j)=node1(2*j+1)
v(j)=node1(2*j+2)
60 continue
if(iclose.eq.1) then
call LQM1(f,u,v,node1(2),node1(1))
if(iero.ne.0) return
nevals=nevals+47
else
call LQM0(f,u,v,node1(2),node1(1))
if(iero.ne.0) return
nevals=nevals+28
end if
do 70 j=1,3
u(j)=node2(2*j+1)
v(j)=node2(2*j+2)
70 continue
if(iclose.eq.1) then
call LQM1(f,u,v,node2(2),node2(1))
if(iero.ne.0) return
nevals=nevals+47
else
call LQM0(f,u,v,node2(2),node2(1))
if(iero.ne.0) return
nevals=nevals+28
end if
newerr=node1(1)+node2(1)
newres=node1(2)+node2(2)
if(newerr.gt.0.99*node(1)) then
if(abs(node(2)-newres).le.1.D-04*abs(newres)) rndcnt=rndcnt+1
end if
result=result-node(2)+newres
error=error-node(1)+newerr
if(node1(1).gt.node1(9)*epsabs/ATOT) then
call HPINS(maxtri,9,data,nu,iwork,node1,GREATR)
else
call HPINS(maxtri,9,data,nd,iwork(maxtri+1),node1,GREATR)
end if
if(node2(1).gt.node2(9)*epsabs/ATOT) then
call HPINS(maxtri,9,data,nu,iwork,node2,GREATR)
else
call HPINS(maxtri,9,data,nd,iwork(maxtri+1),node2,GREATR)
end if
if(rndcnt.ge.20) then
iflag=2
return
end if
if(iflag.eq.0) then
if(epsabs.lt.0.5*tol*abs(result)) then
epsabs=tol*abs(result)
j=nu
5 if(j.eq.0) go to 40
call HPACC(maxtri,9,data,nu,iwork,node,j)
if(node(1).le.epsabs*node(9)/ATOT) then
call HPINS(maxtri,9,data,nd,iwork(maxtri+1),node,GREATR)
call HPDEL(maxtri,9,data,nu,iwork,GREATR,j)
if(j.gt.nu) j=j-1
else
j=j-1
end if
go to 5
end if
end if
go to 40
end
LOGICAL FUNCTION GREATR(A,B,NWDS)
INTEGER NWDS
DOUBLE PRECISION A(NWDS), B(NWDS)
GREATR= A(1) .GT. B(1)
RETURN
END
SUBROUTINE HINITD(NMAX,NWDS,N,T)
C PURPOSE
C THIS ROUTINE INITIALIZES THE HEAP PROGRAMS WITH T(NMAX)
C POINTING TO THE TOP OF THE HEAP.
C IT IS CALLED ONCE AT THE START OF EACH NEW CALCULATION.
C INPUT
C NMAX=MAXIMUM NUMBER OF NODES ALLOWED BY USER
C NWDS=NUMBER OF WORDS PER NODE
C OUTPUT
C N=CURRENT NUMBER OF NODES IN HEAP = 0.
C T=INTEGER ARRAY OF POINTERS TO POTENTIAL HEAP NODES.
C
INTEGER T(1)
DO 1 I=1,NMAX
1 T(I)=(NMAX-I)*NWDS+1
N=0
RETURN
END
SUBROUTINE HINITU(NMAX,NWDS,N,T)
C H E A P PACKAGE
C A COLLECTION OF PROGRAMS WHICH MAINTAIN A HEAP DATA
C STRUCTURE. BY CALLING THESE SUBROUTINES IT IS POSSIBLE TO
C INSERT, DELETE, AND ACCESS AN EXISTING HEAP OR TO BUILD A
C NEW HEAP FROM AN UNORDERED COLLECTION OF NODES. THE HEAP
C FUNCTION IS AN ARGUMENT TO THE SUBROUTINES ALLOWING VERY
C GENERAL ORGANIZATIONS.
C THE USER MUST DECIDE ON THE MAXIMUM NUMBER OF NODES
C ALLOWED AND DIMENSION THE REAL ARRAY DATA AND THE INTEGER
C ARRAY T USED INTERNALLY BY THE PACKAGE. THESE VARIABLES ARE
C THEN PASSED THROUGH THE CALL SEQUENCE BETWEEN THE HEAP
C PROGRAMS BUT ARE NOT IN GENERAL ACCESSED BY THE USER. HE
C MUST ALSO PROVIDE A HEAP FUNCTION WHOSE NAME MUST BE INCLUD-
C ED IN AN EXTERNAL STATEMENT IN THE USER PROGRAM WHICH CALLS
C THE HEAP SUBROUTINES. TWO SIMPLE HEAP FUNCTIONS ARE
C PROVIDED WITH THE PACKAGE.
C
C
C PURPOSE
C THIS ROUTINE INITIALIZES THE HEAP PROGRAMS WITH T(1)
C POINTING TO THE TOP OF THE HEAP.
C IT IS CALLED ONCE AT THE START OF EACH NEW CALCULATION
C INPUT
C NMAX = MAXIMUM NUMBER OF NODES ALLOWED BY USER.
C NWDS = NUMBER OF WORDS PER NODE
C OUTPUT
C N = CURRENT NUMBER OF NODES IN HEAP = 0.
C T = INTEGER ARRAY OF POINTERS TO POTENTIAL HEAP NODES.
C
INTEGER T(1)
DO 1 I = 1, NMAX
1 T(I)=(I-1)*NWDS+1
N = 0
RETURN
END
SUBROUTINE HPACC(NMAX,NWDS,DATA,N,T,XNODE,K)
C
C PURPOSE
C TO ACCESS THE K-TH NODE OF THE HEAP,
C 1 .LE. K .LE. N .LE. NMAX
C INPUT
C NMAX = MAXIMUM NUMBER OF NODES ALLOWED BY USER.
C DATA = WORK AREA FOR STORING NODES.
C N = CURRENT NUMBER OF NODES IN THE HEAP.
C T = INTEGER ARRAY OF POINTERS TO HEAP NODES.
C XNODE = A REAL ARRAY, NWDS WORDS LONG, IN WHICH NODAL IN-
C FORMATION WILL BE INSERTED.
C K = THE INDEX OF THE NODE TO BE FOUND AND INSERTED INTO
C XNODE.
C
C OUTPUT
C XNODE = A REAL ARRAY. CONTAINS IN XNODE(1),...,XNODE(NWDS)
C THE ELEMENTS OF THE K-TH NODE.
C
DOUBLE PRECISION DATA(1), XNODE(1)
INTEGER T(1)
IF (K .LT. 1 .OR. K .GT. N .OR. N .GT. NMAX) RETURN
J=T(K)-1
DO 1 I=1,NWDS
IPJ=I+J
1 XNODE(I)=DATA(IPJ)
RETURN
END
SUBROUTINE HPDEL(NMAX,NWDS,DATA,N,T,HPFUN,K)
C
C PURPOSE
C DELETE K-TH ELEMENT OF HEAP. RESULTING TREE IS REHEAPED.
C INPUT
C NMAX = MAXIMUN NUMBER OF NODES ALLOWED BY USER.
C NWDS = NUMBER OF WORDS PER NODE.
C DATA = WORK AREA IN WHICH THE NODES ARE STORED.
C N = CURRENT NUMBER OF NODES.
C T = INTEGER ARRAY OF POINTERS TO NODES.
C HPFUN = NAME OF USER WRITTEN FUNCTION TO DETERMINE TOP NODE.
C K = INDEX OF NODE TO BE DELETED
C OUTPUT
C N = UPDATED NUMBER OF NODES.
C T = UPDATED INTEGER POINTER ARRAY TO NODES.
C
EXTERNAL HPFUN
LOGICAL HPFUN
DOUBLE PRECISION DATA(1)
INTEGER T(1)
IF(N .EQ. 0) RETURN
IF(K.EQ.N) THEN
N=N-1
RETURN
END IF
KDEL=K
JUNK=T(KDEL)
T(KDEL)=T(N)
T(N)=JUNK
N=N-1
10 IF(KDEL.EQ.1) THEN
CALL HPGRO(NMAX,NWDS,DATA,N,T,HPFUN,KDEL)
RETURN
ELSE
KHALVE=KDEL/2
IL=T(KHALVE)
IR=T(KDEL)
IF(HPFUN(DATA(IL),DATA(IR),NWDS)) THEN
CALL HPGRO(NMAX,NWDS,DATA,N,T,HPFUN,KDEL)
RETURN
ELSE
T(KHALVE)=IR
T(KDEL)=IL
KDEL=KHALVE
END IF
END IF
GO TO 10
END
SUBROUTINE HPGRO(NMAX,NWDS,DATA,N,T,HPFUN,I)
C
C PURPOSE
C FORMS A HEAP OUT OF A TREE. USED PRIVATELY BY HPBLD.
C THE TOP OF THE TREE IS STORED IN LOCATION T(I).
C FIRST SON IS IN LOCATION T(2I), NEXT SON
C IS IN LOCATION T(2I+1).
C THIS PROGRAM ASSUMES EACH BRANCH OF THE TREE IS A HEAP.
C
INTEGER T(1)
DOUBLE PRECISION DATA(1)
LOGICAL HPFUN
IF(N .GT. NMAX) RETURN
C
K=I
1 J=2*K
C
C TEST IF ELEMENT IN J TH POSITION IS A LEAF.
C
IF( J .GT. N ) RETURN
C
C IF THERE IS MORE THAN ONE SON, FIND WHICH SON IS SMALLEST.
C
IF( J .EQ. N ) GO TO 2
IR=T(J)
IL=T(J+1)
IF(HPFUN(DATA(IL),DATA(IR),NWDS)) J=J+1
C
C IF A SON IS LARGER THAN FATHER, INTERCHANGE
C THIS DESTROYS HEAP PROPERTY, SO MUST RE-HEAP REMAINING
C ELEMENTS
C
2 CONTINUE
IL=T(K)
IR=T(J)
IF(HPFUN(DATA(IL),DATA(IR),NWDS)) RETURN
ITEMP=T(J)
T(J)=T(K)
T(K)=ITEMP
K=J
GO TO 1
END
SUBROUTINE HPINS(NMAX,NWDS,DATA,N,T,XNODE,HPFUN)
C
C PURPOSE
C THIS ROUTINE INSERTS A NODE INTO AN ALREADY EXISTING HEAP.
C THE RESULTING TREE IS RE-HEAPED.
C
C INPUT
C NMAX = MAXIMUM NUMBER OF NODES ALLOWED BY USER.
C NWDS = NUMBER OF WORDS PER NODE.
C DATA = WORK AREA FOR STORING NODES.
C N = CURRENT NUMBER OF NODES IN THE TREE.
C T = INTEGER ARRAY OF POINTERS TO HEAP NODES.
C XNODE = A REAL ARRAY, NWDS WORDS LONG, WHICH
C CONTAINS THE NODAL INFORMATION TO BE INSERTED.
C HPFUN = NAME OF USER WRITTEN FUNCTION TO DETERMINE
C THE TOP NODE.
C OUTPUT
C DATA = WORK AREA WITH NEW NODE INSERTED.
C N = UPDATED NUMBER OF NODES.
C T = UPDATED INTEGER POINTER ARRAY.
C
DOUBLE PRECISION XNODE(1),DATA(1)
INTEGER T(1)
LOGICAL HPFUN
EXTERNAL HPFUN
IF(N .EQ. NMAX) RETURN
N=N+1
J= T(N)-1
DO 1 I= 1,NWDS
IPJ=I+J
1 DATA(IPJ) = XNODE(I)
J=N
2 CONTINUE
IF(J .EQ. 1) RETURN
JR=T(J)
J2=J/2
JL=T(J2)
IF(HPFUN(DATA(JL),DATA(JR),NWDS)) RETURN
T(J2)=T(J)
T(J)=JL
J=J2
GO TO 2
END
SUBROUTINE LQM0(F,U,V,RES8,EST)
C
C
C
C PURPOSE
C TO COMPUTE - IF = INTEGRAL OF F OVER THE TRIANGLE
C WITH VERTICES (U(1),V(1)),(U(2),V(2)),(U(3),V(3)), AND
C ESTIMATE THE ERROR,
C - INTEGRAL OF ABS(F) OVER THIS TRIANGLE
C
C CALLING SEQUENCE
C CALL LQM0(F,U,V,RES11,EST)
C PARAMETERS
C F - FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
C F(X,Y); THE ACTUAL NAME FOR F NEEDS TO BE
C DECLARED E X T E R N A L IN THE CALLING
C PROGRAM
C U(1),U(2),U(3)- ABSCISSAE OF VERTICES
C V(1),V(2),V(3)- ORDINATES OF VERTICES
C RES6 - APPROXIMATION TO THE INTEGRAL IF, OBTAINED BY THE
C LYNESS AND JESPERSEN RULE OF DEGREE 6, USING
C 12 POINTS
C RES8 - APPROXIMATION TO THE INTEGRAL IF, OBTAINED BY THE
C LYNESS AND JESPERSEN RULE OF DEGREE 8,
C USING 16 POINTS
C EST - ESTIMATE OF THE ABSOLUTE ERROR
C DRESC - APPROXIMATION TO THE INTEGRAL OF ABS(F- IF/DJ),
C OBTAINED BY THE RULE OF DEGREE 6, AND USED FOR
C THE COMPUTATION OF EST
C
C REMARKS
C DATE OF LAST UPDATE : 10 APRIL 1984 O.W. RECHARD NBS
C
C SUBROUTINES OR FUNCTIONS CALLED :
C - F (USER-SUPPLIED INTEGRAND FUNCTION)
C - DLAMCH FOR MACHINE DEPENDENT INFORMATION
C
C .....................................................................
C
DOUBLE PRECISION DJ,DF0,DRESC,EMACH,EST,F,FV,F0,U,V,
* RES6,RES8,U1,U2,U3,UFLOW,V1,V2,V3,W,W60,W80,X,Y
* ,ZETA1,ZETA2,Z1,Z2,Z3,RESAB6
EXTERNAL F
DOUBLE PRECISION DLAMCH
INTEGER J,KOUNT,L
common/iertwo/iero
C
DIMENSION FV(19),W(9),X(3),Y(3),ZETA1(9),ZETA2(9),U(3),V(3)
C
C
C FIRST HOMOGENEOUS COORDINATES OF POINTS IN DEGREE-6
C AND DEGREE-8 FORMULA, TAKEN WITH MULTIPLICITY 3
DATA ZETA1(1),ZETA1(2),ZETA1(3),ZETA1(4),ZETA1(5),ZETA1(6),ZETA1(7
* ),ZETA1(8),ZETA1(9)/0.5014265096581342D+00,
* 0.8738219710169965D+00,0.6365024991213939D+00,
* 0.5314504984483216D-01,0.8141482341455413D-01,
* 0.8989055433659379D+00,0.6588613844964797D+00,
* 0.8394777409957211D-02,0.7284923929554041D+00/
C SECOND HOMOGENEOUS COORDINATES OF POINTS IN DEGREE-6
C AND DEGREE-8 FORMULA, TAKEN WITH MUNLTIPLICITY 3
DATA ZETA2(1),ZETA2(2),ZETA2(3),ZETA2(4),ZETA2(5),ZETA2(6),ZETA2(7
* ),ZETA2(8),ZETA2(9)/0.2492867451709329D+00,
* 0.6308901449150177D-01,0.5314504984483216D-01,
* 0.6365024991213939D+00,0.4592925882927229D+00,
* 0.5054722831703103D-01,0.1705693077517601D+00,
* 0.7284923929554041D+00,0.8394777409957211D-02/
C WEIGHTS OF MID-POINT OF TRIANGLE IN DEGREE-6
C RESP. DEGREE-8 FORMULAE
DATA W60/0.0D+00/
DATA W80/0.1443156076777862D+00/
C WEIGHTS IN DEGREE-6 AND DEGREE-8 RULE
DATA W(1),W(2),W(3),W(4),W(5),W(6),W(7),W(8),W(9)/
* 0.1167862757263407D+00,0.5084490637020547D-01,
* 0.8285107561839291D-01,0.8285107561839291D-01,
* 0.9509163426728497D-01,0.3245849762319813D-01,
* 0.1032173705347184D+00,0.2723031417443487D-01,
* 0.2723031417443487D-01/
C
C LIST OF MAJOR VARIABLES
C ----------------------
C DJ - AREA OF THE TRIANGLE
C DRESC - APPROXIMATION TO INTEGRAL OF
C ABS(F- IF/DJ) OVER THE TRIANGLE
C RESAB6 - APPROXIMATION TO INTEGRAL OF
C ABS(F) OVER THE TRIANGLE
C X - CARTESIAN ABSCISSAE OF THE INTEGRATION
C POINTS
C Y - CARTESIAN ORDINATES OF THE INTEGRATION
C POINTS
C FV - FUNCTION VALUES
C
C COMPUTE DEGREE-6 AND DEGREE-8 RESULTS FOR IF/DJ AND
C DEGREE-6 APPROXIMATION FOR ABS(F)
C
EMACH = DLAMCH('p')
UFLOW = DLAMCH('u')
U1=U(1)
U2=U(2)
U3=U(3)
V1=V(1)
V2=V(2)
V3=V(3)
DJ = ABS(U1*V2-U2*V1-U1*V3+V1*U3+U2*V3-V2*U3)*0.5D+00
F0 = F((U1+U2+U3)/3.0D+00,(V1+V2+V3)/3.0D+00)
if(iero.ne.0) return
RES6 = F0*W60
RESAB6 = ABS(F0)*W60
FV(1) = F0
KOUNT = 1
RES8 = F0*W80
DO 50 J=1,9
Z1 = ZETA1(J)
Z2 = ZETA2(J)
Z3 = 1.0D+00-Z1-Z2
X(1) = Z1*U1+Z2*U2+Z3*U3
Y(1) = Z1*V1+Z2*V2+Z3*V3
X(2) = Z2*U1+Z3*U2+Z1*U3
Y(2) = Z2*V1+Z3*V2+Z1*V3
X(3) = Z3*U1+Z1*U2+Z2*U3
Y(3) = Z3*V1+Z1*V2+Z2*V3
IF(J.LE.4) THEN
F0 = 0.0D+00
DF0 = 0.0D+00
DO 10 L=1,3
KOUNT = KOUNT+1
FV(KOUNT) = F(X(L),Y(L))
if(iero.ne.0) return
F0 = F0+FV(KOUNT)
DF0 = DF0+ABS(FV(KOUNT))
10 CONTINUE
RES6 = RES6+F0*W(J)
RESAB6 = RESAB6+DF0*W(J)
ELSE
F0 = F(X(1),Y(1))+F(X(2),Y(2))+F(X(3),Y(3))
if(iero.ne.0) return
RES8 = RES8+F0*W(J)
ENDIF
50 CONTINUE
C
C COMPUTE DEGREE-6 APPROXIMATION FOR THE INTEGRAL OF
C ABS(F-IF/DJ)
C
DRESC = ABS(FV(1)-RES6)*W60
KOUNT = 2
DO 60 J=1,4
DRESC = DRESC+(ABS(FV(KOUNT)-RES6)+ABS(FV(KOUNT+1)-RES6)+ABS(
* FV(KOUNT+2)-RES6))*W(J)
KOUNT = KOUNT+3
60 CONTINUE
C
C COMPUTE DEGREE-6 AND DEGREE-8 APPROXIMATIONS FOR IF,
C AND ERROR ESTIMATE
C
RES6 = RES6*DJ
RES8 = RES8*DJ
RESAB6 = RESAB6*DJ
DRESC = DRESC*DJ
EST = ABS(RES6-RES8)
IF(DRESC.NE.0.0D+00) EST = MAX(EST,DRESC*MIN(1.0D+00,(20.0D+00
* *EST/DRESC)**1.5D+00))
IF(RESAB6.GT.UFLOW) EST = MAX(EMACH*RESAB6,EST)
RETURN
END
SUBROUTINE LQM1(F,U,V,RES11,EST)
C
C
C
C PURPOSE
C TO COMPUTE - IF = INTEGRAL OF F OVER THE TRIANGLE
C WITH VERTICES (U(1),V(1)),(U(2),V(2)),(U(3),V(3)), AND
C ESTIMATE THE ERROR,
C - INTEGRAL OF ABS(F) OVER THIS TRIANGLE
C
C CALLING SEQUENCE
C CALL LQM1(F,U,V,RES11,EST)
C PARAMETERS
C F - FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
C F(X,Y); THE ACTUAL NAME FOR F NEEDS TO BE
C DECLARED E X T E R N A L IN THE CALLING
C PROGRAM
C U(1),U(2),U(3)- ABSCISSAE OF VERTICES
C V(1),V(2),V(3)- ORDINATES OF VERTICES
C RES9 - APPROXIMATION TO THE INTEGRAL IF, OBTAINED BY THE
C LYNESS AND JESPERSEN RULE OF DEGREE 9, USING
C 19 POINTS
C RES11 - APPROXIMATION TO THE INTEGRAL IF, OBTAINED BY THE
C LYNESS AND JESPERSEN RULE OF DEGREE 11,
C USING 28 POINTS
C EST - ESTIMATE OF THE ABSOLUTE ERROR
C DRESC - APPROXIMATION TO THE INTEGRAL OF ABS(F- IF/DJ),
C OBTAINED BY THE RULE OF DEGREE 9, AND USED FOR
C THE COMPUTATION OF EST
C
C REMARKS
C DATE OF LAST UPDATE : 18 JAN 1984 D. KAHANER NBS
C
C SUBROUTINES OR FUNCTIONS CALLED :
C - F (USER-SUPPLIED INTEGRAND FUNCTION)
C - DLAMCH FOR MACHINE DEPENDENT INFORMATION
C
C .....................................................................
C
DOUBLE PRECISION DJ,DF0,DRESC,EMACH,EST,F,FV,F0,U,V,
* RES9,RES11,U1,U2,U3,UFLOW,V1,V2,V3,W,W90,W110,X,Y
* ,ZETA1,ZETA2,Z1,Z2,Z3
EXTERNAL F
DOUBLE PRECISION DLAMCH
INTEGER J,KOUNT,L
common/iertwo/iero
C
DIMENSION FV(19),W(15),X(3),Y(3),ZETA1(15),ZETA2(15),U(3),V(3)
C
C
C FIRST HOMOGENEOUS COORDINATES OF POINTS IN DEGREE-9
C AND DEGREE-11 FORMULA, TAKEN WITH MULTIPLICITY 3
DATA ZETA1(1),ZETA1(2),ZETA1(3),ZETA1(4),ZETA1(5),ZETA1(6),ZETA1(7
* ),ZETA1(8),ZETA1(9),ZETA1(10),ZETA1(11),ZETA1(12),ZETA1(13),
* ZETA1(14),ZETA1(15)/0.2063496160252593D-01,0.1258208170141290D+
* 00,0.6235929287619356D+00,0.9105409732110941D+00,
* 0.3683841205473626D-01,0.7411985987844980D+00,
* 0.9480217181434233D+00,0.8114249947041546D+00,
* 0.1072644996557060D-01,0.5853132347709715D+00,
* 0.1221843885990187D+00,0.4484167758913055D-01,
* 0.6779376548825902D+00,0.0D+00,0.8588702812826364D+00/
C SECOND HOMOGENEOUS COORDINATES OF POINTS IN DEGREE-9
C AND DEGREE-11 FORMULA, TAKEN WITH MUNLTIPLICITY 3
DATA ZETA2(1),ZETA2(2),ZETA2(3),ZETA2(4),ZETA2(5),ZETA2(6),ZETA2(7
* ),ZETA2(8),ZETA2(9),ZETA2(10),ZETA2(11),ZETA2(12),ZETA2(13),
* ZETA2(14),ZETA2(15)/0.4896825191987370D+00,0.4370895914929355D+
* 00,0.1882035356190322D+00,0.4472951339445297D-01,
* 0.7411985987844980D+00,0.3683841205473626D-01,
* 0.2598914092828833D-01,0.9428750264792270D-01,
* 0.4946367750172147D+00,0.2073433826145142D+00,
* 0.4389078057004907D+00,0.6779376548825902D+00,
* 0.4484167758913055D-01,0.8588702812826364D+00,0.0D+00/
C WEIGHTS OF MID-POINT OF TRIANGLE IN DEGREE-9
C RESP. DEGREE-11 FORMULAE
DATA W90/0.9713579628279610D-01/
DATA W110/0.8797730116222190D-01/
C WEIGHTS IN DEGREE-9 AND DEGREE-11 RULE
DATA W(1),W(2),W(3),W(4),W(5),W(6),W(7),W(8),W(9),W(10),W(11),W(12
* ),W(13),W(14),W(15)/0.3133470022713983D-01,0.7782754100477543D-
* 01,0.7964773892720910D-01,0.2557767565869810D-01,
* 0.4328353937728940D-01,0.4328353937728940D-01,
* 0.8744311553736190D-02,0.3808157199393533D-01,
* 0.1885544805613125D-01,0.7215969754474100D-01,
* 0.6932913870553720D-01,0.4105631542928860D-01,
* 0.4105631542928860D-01,0.7362383783300573D-02,
* 0.7362383783300573D-02/
C
C LIST OF MAJOR VARIABLES
C ----------------------
C DJ - AREA OF THE TRIANGLE
C DRESC - APPROXIMATION TO INTEGRAL OF
C ABS(F- IF/DJ) OVER THE TRIANGLE
C RESAB9 - APPROXIMATION TO INTEGRAL OF
C ABS(F) OVER THE TRIANGLE
C X - CARTESIAN ABSCISSAE OF THE INTEGRATION
C POINTS
C Y - CARTESIAN ORDINATES OF THE INTEGRATION
C POINTS
C FV - FUNCTION VALUES
C
C COMPUTE DEGREE-9 AND DEGREE-11 RESULTS FOR IF/DJ AND
C DEGREE-9 APPROXIMATION FOR ABS(F)
C
EMACH = DLAMCH('p')
UFLOW = DLAMCH('u')
U1=U(1)
U2=U(2)
U3=U(3)
V1=V(1)
V2=V(2)
V3=V(3)
DJ = ABS(U1*V2-U2*V1-U1*V3+V1*U3+U2*V3-V2*U3)*0.5D+00
F0 = F((U1+U2+U3)/3.0D+00,(V1+V2+V3)/3.0D+00)
if(iero.ne.0) return
RES9 = F0*W90
RESAB9 = ABS(F0)*W90
FV(1) = F0
KOUNT = 1
RES11 = F0*W110
DO 50 J=1,15
Z1 = ZETA1(J)
Z2 = ZETA2(J)
Z3 = 1.0D+00-Z1-Z2
X(1) = Z1*U1+Z2*U2+Z3*U3
Y(1) = Z1*V1+Z2*V2+Z3*V3
X(2) = Z2*U1+Z3*U2+Z1*U3
Y(2) = Z2*V1+Z3*V2+Z1*V3
X(3) = Z3*U1+Z1*U2+Z2*U3
Y(3) = Z3*V1+Z1*V2+Z2*V3
IF(J.LE.6) THEN
F0 = 0.0D+00
DF0 = 0.0D+00
DO 10 L=1,3
KOUNT = KOUNT+1
FV(KOUNT) = F(X(L),Y(L))
if(iero.ne.0) return
F0 = F0+FV(KOUNT)
DF0 = DF0+ABS(FV(KOUNT))
10 CONTINUE
RES9 = RES9+F0*W(J)
RESAB9 = RESAB9+DF0*W(J)
ELSE
F0 = F(X(1),Y(1))+F(X(2),Y(2))+F(X(3),Y(3))
if(iero.ne.0) return
RES11 = RES11+F0*W(J)
ENDIF
50 CONTINUE
C
C COMPUTE DEGREE-9 APPROXIMATION FOR THE INTEGRAL OF
C ABS(F-IF/DJ)
C
DRESC = ABS(FV(1)-RES9)*W90
KOUNT = 2
DO 60 J=1,6
DRESC = DRESC+(ABS(FV(KOUNT)-RES9)+ABS(FV(KOUNT+1)-RES9)+ABS(
* FV(KOUNT+2)-RES9))*W(J)
KOUNT = KOUNT+3
60 CONTINUE
C
C COMPUTE DEGREE-9 AND DEGREE-11 APPROXIMATIONS FOR IF,
C AND ERROR ESTIMATE
C
RES9 = RES9*DJ
RES11 = RES11*DJ
RESAB9 = RESAB9*DJ
DRESC = DRESC*DJ
EST = ABS(RES9-RES11)
IF(DRESC.NE.0.0D+00) EST = MAX(EST,DRESC*MIN(1.0D+00,(20.0D+00
* *EST/DRESC)**1.5D+00))
IF(RESAB9.GT.UFLOW) EST = MAX(EMACH*RESAB9,EST)
RETURN
END
subroutine tridv(node,node1,node2,coef,rank)
double precision node(10),node1(10),node2(10),coef
integer rank
double precision s(3),coef1,temp
integer t(3)
coef1=1.0-coef
s(1)=(node(3)-node(5))**2+(node(4)-node(6))**2
s(2)=(node(5)-node(7))**2+(node(6)-node(8))**2
s(3)=(node(3)-node(7))**2+(node(4)-node(8))**2
t(1)=1
t(2)=2
t(3)=3
do 10 i=1,2
do 10 j=i+1,3
if(s(i).lt.s(j)) then
temp=t(i)
t(i)=t(j)
t(j)=temp
end if
10 continue
if(t(rank).eq.1)then
node1(3)=coef*node(3)+coef1*node(5)
node1(4)=coef*node(4)+coef1*node(6)
node1(5)=node(5)
node1(6)=node(6)
node1(7)=node(7)
node1(8)=node(8)
node2(3)=node1(3)
node2(4)=node1(4)
node2(5)=node(7)
node2(6)=node(8)
node2(7)=node(3)
node2(8)=node(4)
else if(t(rank).eq.2) then
node1(3)=coef*node(5)+coef1*node(7)
node1(4)=coef*node(6)+coef1*node(8)
node1(5)=node(7)
node1(6)=node(8)
node1(7)=node(3)
node1(8)=node(4)
node2(3)=node1(3)
node2(4)=node1(4)
node2(5)=node(3)
node2(6)=node(4)
node2(7)=node(5)
node2(8)=node(6)
else
node1(3)=coef*node(3)+coef1*node(7)
node1(4)=coef*node(4)+coef1*node(8)
node1(5)=node(3)
node1(6)=node(4)
node1(7)=node(5)
node1(8)=node(6)
node2(3)=node1(3)
node2(4)=node1(4)
node2(5)=node(5)
node2(6)=node(6)
node2(7)=node(7)
node2(8)=node(8)
end if
node1(9)=coef*node(9)
node2(9)=coef1*node(9)
end
SUBROUTINE INTEGXERROR(MESSG,NMESSG,NERR,LEVEL)
C***BEGIN PROLOGUE XERROR
C***DATE WRITTEN 790801 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. R3C
C***KEYWORDS ERROR,XERROR PACKAGE
C***AUTHOR JONES, R. E., (SNLA)
C***PURPOSE Processes an error (diagnostic) message.
C***DESCRIPTION
C Abstract
C XERROR processes a diagnostic message, in a manner
C determined by the value of LEVEL and the current value
C of the library error control flag, KONTRL.
C (See subroutine XSETF for details.)
C
C Description of Parameters
C --Input--
C MESSG - the Hollerith message to be processed, containing
C no more than 72 characters.
C NMESSG- the actual number of characters in MESSG.
C NERR - the error number associated with this message.
C NERR must not be zero.
C LEVEL - error category.
C =2 means this is an unconditionally fatal error.
C =1 means this is a recoverable error. (I.e., it is
C non-fatal if XSETF has been appropriately called.)
C =0 means this is a warning message only.
C =-1 means this is a warning message which is to be
C printed at most once, regardless of how many
C times this call is executed.
C
C Examples
C CALL XERROR('SMOOTH -- NUM WAS ZERO.',23,1,2)
C CALL XERROR('INTEG -- LESS THAN FULL ACCURACY ACHIEVED.',
C 43,2,1)
C CALL XERROR('ROOTER -- ACTUAL ZERO OF F FOUND BEFORE INTERVAL F
C 1ULLY COLLAPSED.',65,3,0)
C CALL XERROR('EXP -- UNDERFLOWS BEING SET TO ZERO.',39,1,-1)
C
C Latest revision --- 19 MAR 1980
C Written by Ron Jones, with SLATEC Common Math Library Subcommittee
C***REFERENCES JONES R.E., KAHANER D.K., "XERROR, THE SLATEC ERROR-
C HANDLING PACKAGE", SAND82-0800, SANDIA LABORATORIES,
C 1982.
C***ROUTINES CALLED XERRWV
C***END PROLOGUE XERROR
CHARACTER*(*) MESSG
C***FIRST EXECUTABLE STATEMENT XERROR
CALL XERRWV(MESSG,NMESSG,NERR,LEVEL,0,0,0,0,0.,0.)
RETURN
END
|