1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
C INTLINMEQ.F - Gateway function for solving Sylvester and Lyapunov matrix
C equations using SLICOT routines SB04MD, SB04ND, SB04PD,
C SB04QD, SB04RD, SB03MD, and SB03OD.
C
C Copyright INRIA 2001
C Scilab syntax
C [X(,sep)] = linmeq(task,A(,B),C,flag,trans(,schur))
C
C task = 1 : [X] = linmeq(1,A,B,C,flag,trans,schur)
C task = 2 : [X,sep] = linmeq(2,A,C,flag,trans)
C [X] = linmeq(2,A,C,flag,trans)
C task = 3 : [X] = linmeq(3,A,C,flag,trans)
C
C Purpose:
C To solve the Sylvester and Lyapunov linear matrix equations
C
C task = 1:
C
C op(A)*X + X*op(B) = C, (1a)
C
C op(A)*X*op(B) + X = C, (1b)
C
C task = 2:
C
C op(A)'*X + X*op(A) = C, (2a)
C
C op(A)'*X*op(A) - X = C, (2b)
C
C task = 3:
C
C op(A)'*(op(X)'*op(X)) + (op(X)'*op(X))*op(A) =
C - op(C)'*op(C), (3a)
C
C op(A)'*(op(X)'*op(X))*op(A) - op(X)'*op(X) =
C - op(C)'*op(C), (3b)
C
C where op(M) = M, if trans = 0, and op(M) = M', if trans = 1.
C
C Input parameters:
C task - integer option to determine the equation type:
C = 1 : solve the Sylvester equation (1a) or (1b);
C = 2 : solve the Lyapunov equation (2a) or (2b);
C = 3 : solve for the Cholesky factor op(X) the Lyapunov
C equation (3a) or (3b).
C A - real coefficient N-by-N matrix.
C When task = 3, matrix A must be stable.
C B - another real coefficient M-by-M matrix for
C equations (1a) or (1b).
C C - right hand side matrix.
C task = 1 : C is N-by-M;
C task = 2 : C is N-by-N symmetric;
C task = 3 : op(C) is P-by-N.
C flag - (optional) integer vector of length 3 or 2 containing
C options.
C task = 1 : flag has length 3
C flag(1) = 0 : solve the continuous-time equation (1a);
C otherwise, solve the discrete-time
C equation (1b).
C flag(2) = 1 : A is (quasi) upper triangular;
C 2 : A is upper Hessenberg;
C otherwise, A is in general form.
C flag(3) = 1 : B is (quasi) upper triangular;
C 2 : B is upper Hessenberg;
C otherwise, B is in general form.
C task = 2 : flag has length 2
C flag(1) = 0 : solve continuous-time equation (2a);
C otherwise, solve discrete-time
C equation (2b).
C flag(2) = 1 : A is (quasi) upper triangular;
C otherwise, A is in general form.
C task = 3 : flag has length 2
C flag(1) = 0 : solve continuous-time equation (3a);
C otherwise, solve discrete-time
C equation (3b).
C flag(2) = 1 : A is (quasi) upper triangular;
C otherwise, A is in general form.
C Default: flag(1) = 0, flag(2) = 0 (, flag(3) = 0).
C trans - (optional) integer specifying a transposition option.
C trans = 0 : solve the equations (1) - (3) with op(M) = M.
C trans = 1 : solve the equations (1) - (3) with op(M) = M'.
C trans = 2 : solve the equations (1) with op(A) = A',
C op(B) = B.
C trans = 3 : solve the equations (1) with op(A) = A,
C op(B) = B'.
C Default: trans = 0.
C schur - (optional) integer specifying whether the Hessenberg-Schur
C or Schur method should be used.
C Available for task = 1.
C schur = 1 : Hessenberg-Schur method (one matrix is reduced
C to Schur form).
C schur = 2 : Schur method (two matrices are reduced to Schur
C form).
C Default: schur = 1.
C
C Output parameters:
C X - solution of the equation (or its Cholesky factor for (3)).
C sep - (optional) estimator of Sep(op(A),-op(A)') for (2.a) or
C Sepd(A,A') for (2.b).
C
C Comments:
C 1. For equation (1a) or (1b), when schur = 1, the Hessenberg-Schur
C method is used, reducing one matrix to Hessenberg form and the
C other one to a real Schur form.
C Otherwise, both matrices are reduced to real Schur forms.
C If one or both matrices are already reduced to Schur/Hessenberg
C forms, this could be specified by flag(2) and flag(3).
C For general matrices, the Hessenberg-Schur method could be
C significantly more efficient than the Schur method.
C 2. For equation (3a) or (3b), the computed matrix X is the Cholesky
C factor of the solution, i.e., the real solution is op(X)'*op(X),
C where X is an N-by-N upper triangular matrix.
C
C References:
C This interface is based on the SLICOT routines:
C SB04PD, SB04MD, SB04QD, DTRSYL, SB04PY, SB04ND, SB04RD, SB03MD, SB03OD
C
C
C Revisions:
C Adapted from the Slicot Matlab Mexfile by S. Steer Oct 2001
C
C **********************************************************************
C
C
SUBROUTINE intlinmeq (fname)
include '../stack.h'
character*(*) fname
C .. Parameters ..
double precision ONE ,ZERO
parameter (ONE =1.0D0,ZERO =0.0D0)
C .. Scalar parameters used by SLICOT subroutines ..
character DICO ,FACT ,FACTA ,FACTB ,JOB ,SCHU ,TRANA ,TRANB ,ULA ,
$ ULB
integer INFO ,ISGN ,LDA ,LDB ,LDC ,LDU ,LDV ,NDWORK ,M ,N ,P
double precision FERR ,SCALE ,SEP ,TOL
integer lA, lB, lC, lDWORK, lU, lV, lWR, lWI
C
C .. Local variables and constant dimension arrays ..
logical PERTRB
integer FLAG (3),IB ,IP ,J ,LDW1 ,LDW2 ,NIWORK ,MC ,MXMN ,
$ NC ,NM ,NSCHUR ,TASK ,TRANS
double precision TEMP
C
C .. External functions ..
logical lsame, createvar, checkrhs, checklhs, getrhsvar
logical getscalar, getrmat, iscomplex
external lsame , createvar, checkrhs, checklhs, getrhsvar
external getscalar, getrmat
C
C .. External subroutines ..
external dlacpy ,dlaset ,dswap ,dtrsyl ,sb03md ,sb03od ,sb04md ,
$ sb04nd ,sb04pd ,sb04py ,sb04qd ,sb04rd
C
C ..Intrinsic functions..
intrinsic max ,min
C Check for proper number of arguments.
C
if(.not.checkrhs(fname,3,7)) return
if(.not.checklhs(fname,1,2)) return
C
C Check dimensions of input parameters and read/set scalar parameters.
C
C task
if(.not.getrhsvar(1,'i', Mt, Nt, ilTASK)) return
if(Mt*Nt.ne.1) then
err=1
call error(204)
return
endif
TASK=istk(ilTASK)
if (TASK.LT.1 .OR.TASK.GT.3 )THEN
buf='TASK HAS 1, 2, OR 3 THE ONLY ADMISSIBLE VALUES'
call error(1003)
return
endif
C
if (TASK.EQ.1 )THEN
if (RHS.LT.4 )THEN
buf='TASK=1: LINMEQ REQUIRES AT LEAST 4 INPUT ARGUMENTS'
call error(1003)
return
endif
IP =6
else
IP =5
endif
C
C trans
C
TRANS =0
if (RHS.GE.IP )THEN
if(.not.getrhsvar(IP,'i', Mt, Nt, ilTRANS)) return
if(Mt*Nt.gt.1) then
err=1
call error(204)
return
endif
if(Mt*Nt.eq.1) TRANS=istk(ilTRANS)
endif
if (TASK.EQ.1 .AND.(TRANS.LT.0 .OR.TRANS.GT.3 ))THEN
buf='TRANS HAS 0, 1, 2, OR 3 THE ONLY ADMISSIBLE VALUES'
call error(1003)
return
elseif (TASK.NE.1 .AND.(TRANS.LT.0 .OR.TRANS.GT.1 ))THEN
buf='TRANS HAS 0, OR 1 THE ONLY ADMISSIBLE VALUES'
call error(1003)
return
endif
C
C schur
C
if (TASK.EQ.1 )THEN
NSCHUR =1
if (RHS.EQ.IP +1) THEN
if(.not.getrhsvar(IP+1,'i', Mt, Nt, ilSCHUR)) return
if(Mt*Nt.gt.1) then
err=1
call error(204)
return
endif
if(Mt*Nt.eq.1) NSCHUR=istk(ilSCHUR)
if (NSCHUR.LT.1 .OR.NSCHUR.GT.2 )THEN
buf='SCHUR HAS 1, OR 2 THE ONLY ADMISSIBLE VALUES'
call error(1003)
return
endif
endif
endif
C
C A(NxN), (B(MxM),) C(NxM), or C(NxN), or op(C)(PxN)
C
if(.not.getrhsvar(2,'d', MA, NA, lA)) return
if(iscomplex(2)) then
err=2
call error(52)
return
endif
if(MA.NE.NA) then
err=2
call error(20)
return
endif
N=MA
if (TASK.EQ.1) THEN
if(.not.getrhsvar(3,'d', MB, NB, lB)) return
if(iscomplex(3)) then
err=3
call error(52)
return
endif
if(MB.NE.NB) then
err=3
call error(20)
return
endif
M=Mb
if(.not.getrhsvar(4,'d', MC, NC, lC)) return
if(iscomplex(4)) then
err=4
call error(52)
return
endif
if(MC.NE.N) then
err=4
call error(89)
return
endif
M=NC
lhsvar(1)=4
else
if(.not.getrhsvar(3,'d', MC, NC, lC)) return
if(iscomplex(3)) then
err=3
call error(52)
return
endif
c if (TASK.EQ.3 )THEN
if (TRANS.EQ.0 )THEN
P = MC
if(NC.ne.N) then
err=3
call error(89)
return
endif
else
if(MC.ne.N) then
err=3
call error(89)
return
endif
P = NC
c endif
endif
lhsvar(1)=3
endif
C
if(TASK.eq.1) then
IP=5
else
IP=4
endif
FLAG (1)=0
FLAG (2)=0
FLAG (3)=0
if (RHS.GE.IP )THEN
C
C flag
C
if(.not.getrhsvar(IP,'i', Mt, Nt, ilFLAG)) return
if (TASK.EQ.1 )THEN
if (MT*NT.GT.3) then
buf='FLAG MUST BE A VECTOR WITH AT MOST 3 ELEMENTS'
call error(1003)
return
endif
else
if (MT*NT.GT.2 ) THEN
buf='FLAG MUST BE A VECTOR WITH AT MOST 2 ELEMENTS'
call error(1003)
return
endif
endif
DO I=1,MT*NT
FLAG(I)=istk(ilFLAG-1+i)
enddo
endif
C
C Determine the lenghts of working arrays.
C Use a larger value for NDWORK for enabling calls of block algorithms
C in DGEES, and possibly in DGEHRD, DGEQRF, DGERQF, SB04PD.
C
LDA =MAX (1,N )
if (TASK.EQ.1 )THEN
LDB =MAX (1,M )
if (NSCHUR.EQ.2 )THEN
if (FLAG (2).EQ.1)THEN
LDW1 =0
LDW2 =0
else
LDW1 =1+2*N
LDW2 =3*N
endif
IB =0
if (FLAG (3).NE.1)THEN
IB =2*M
if (FLAG (2).EQ.1)IB =IB +1
LDW2 =MAX (LDW2 ,IB +3*M )
endif
LDW2 =MAX (LDW2 ,IB +2*N )
NDWORK =MAX (1,LDW1 +LDW2 )
else
if (FLAG (2)*FLAG (3).EQ.1)THEN
NIWORK =0
if (FLAG (1).NE.0)THEN
NDWORK =2*N
else
NDWORK =0
endif
elseif (FLAG (2)*FLAG (3).EQ.2)THEN
MXMN =MAX (M ,N )
NIWORK =2*MXMN
NDWORK =2*MXMN *(4+2*MXMN )
else
NIWORK =4*N
NDWORK =MAX (1,5*M ,N +M )
if (FLAG (1).EQ.0)THEN
NDWORK =MAX (NDWORK ,2*N *N +8*N )
else
NDWORK =MAX (NDWORK ,2*N *N +9*N )
endif
endif
endif
NM =M
C
elseif (TASK.EQ.2 )THEN
NDWORK =MAX (1,N *N ,3*N )
if (LHS.EQ.2 )THEN
NDWORK =MAX (NDWORK ,2*N *N )
if (FLAG (1).NE.0)NDWORK =MAX (NDWORK ,2*(N *N +N ))
endif
NM =N
endif
if (TASK.NE.3 )THEN
LDC =LDA
else
if (TRANS.EQ.0 )THEN
LDC =MAX (1,N ,P )
else
LDC =LDA
endif
MXMN =MIN (P ,N )
NDWORK =MAX (1,4*N +MXMN )
NM =N
endif
C
C Allocate variable dimension local arrays.
C
if (TASK.EQ.1 )THEN
if(.NOT.CREATEVAR(NBVARS+1,'d',NDWORK,1,lDWORK)) RETURN
if (NSCHUR.EQ.2 )THEN
if (FLAG (2).EQ.1)THEN
FACTA ='S'
LDU =1
if(.NOT.CREATEVAR(NBVARS+1,'d',LDU,1,lU)) RETURN
else
FACTA ='N'
LDU =LDA
if(.NOT.CREATEVAR(NBVARS+1,'d',LDU,N,lU)) RETURN
endif
if (FLAG (3).EQ.1)THEN
FACTB ='S'
LDV =1
if(.NOT.CREATEVAR(NBVARS+1,'d',LDV,1,lV)) RETURN
else
FACTB ='N'
LDV =LDB
if(.NOT.CREATEVAR(NBVARS+1,'d',LDV,M,lV)) RETURN
endif
else
SCHU ='N'
if(.NOT.CREATEVAR(NBVARS+1,'i',NIWORK,1,lIWORK)) RETURN
if (FLAG (2).EQ.1)THEN
if (FLAG (3).EQ.1)THEN
SCHU ='S'
elseif (FLAG (3).EQ.2)THEN
SCHU ='A'
endif
elseif (FLAG (2).EQ.2.AND. FLAG (3).EQ.1)THEN
SCHU ='B'
endif
C
if (LSAME (SCHU ,'N'))THEN
LDU =LDB
if(.NOT.CREATEVAR(NBVARS+1,'d',LDU,M,lU)) RETURN
endif
endif
C
elseif (TASK.EQ.2 )THEN
LDU =LDA
if(.NOT.CREATEVAR(NBVARS+1,'d',LDU,N,lU)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',NDWORK,1,lDWORK)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',N,1,lWI)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',N,1,lWR)) RETURN
if (LHS.EQ.1 )THEN
if(.NOT.CREATEVAR(NBVARS+1,'i',1,1,lIWORK)) RETURN
else
if(.NOT.CREATEVAR(NBVARS+1,'i',N*N,1,lIWORK)) RETURN
endif
else
LDU =LDA
if(.NOT.CREATEVAR(NBVARS+1,'d',LDU,N,lU)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',NDWORK,1,lDWORK)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',N,1,lWI)) RETURN
if(.NOT.CREATEVAR(NBVARS+1,'d',N,1,lWR)) RETURN
endif
C
C Do the actual computations.
C
if (TASK.EQ.1 )THEN
C
if (NSCHUR.EQ.2 )THEN
if (TRANS.EQ.0 )THEN
TRANA ='N'
TRANB ='N'
elseif (TRANS.EQ.1 )THEN
TRANA ='T'
TRANB ='T'
elseif (TRANS.EQ.2 )THEN
TRANA ='T'
TRANB ='N'
elseif (TRANS.EQ.3 )THEN
TRANA ='N'
TRANB ='T'
endif
if (FLAG (1).NE.0)THEN
DICO ='D'
else
DICO ='C'
endif
ISGN =1
call SB04PD (DICO ,FACTA ,FACTB ,TRANA ,TRANB ,ISGN ,N ,M ,
$ stk(lA), LDA ,stk(lU),LDU ,stk(lB),LDB ,stk(lV),LDV ,
$ stk(lC), LDC ,SCALE ,stk(lDWORK),NDWORK ,INFO )
else
if (TRANS.EQ.0 )THEN
if (LSAME (SCHU ,'S'))THEN
TRANA ='N'
TRANB ='N'
else
ULA ='U'
ULB ='U'
endif
elseif (TRANS.EQ.1 )THEN
if (LSAME (SCHU ,'S'))THEN
TRANA ='T'
TRANB ='T'
else
ULA ='L'
ULB ='L'
DO 10J =2,N
call DSWAP (J -1,stk(lA+1-1 +(J-1)*LDA),1,stk(lA+J-
$ 1 +(1-1)*LDA),LDA )
10 CONTINUE
DO 20J =2,M
call DSWAP (J -1,stk(lB+1-1 +(J-1)*LDB),1,stk(lB+J-
$ 1 +(1-1)*LDB),LDB )
20 CONTINUE
endif
elseif (TRANS.EQ.2 )THEN
if (LSAME (SCHU ,'S'))THEN
TRANA ='T'
TRANB ='N'
else
ULA ='L'
ULB ='U'
DO 30J =2,N
call DSWAP (J -1,stk(lA+1-1 +(J-1)*LDA),1,stk(lA+J-
$ 1 +(1-1)*LDA),LDA )
30 CONTINUE
endif
elseif (TRANS.EQ.3 )THEN
if (LSAME (SCHU ,'S'))THEN
TRANA ='N'
TRANB ='T'
else
ULA ='U'
ULB ='L'
DO 40J =2,M
call DSWAP (J -1,stk(lB+1-1 +(J-1)*LDB),1,stk(lB+J-
$ 1 +(1-1)*LDB),LDB )
40 CONTINUE
endif
endif
C
if (LSAME (SCHU ,'N'))THEN
C
SCALE =ONE
if (FLAG (1).EQ.0)THEN
call SB04MD (N ,M ,stk(lA),LDA ,stk(lB),LDB ,stk(lC),
$ LDC ,stk(lU),LDU ,istk(lIWORK),stk(lDWORK),NDWORK ,
$ INFO )
else
call SB04QD (N ,M ,stk(lA),LDA ,stk(lB),LDB ,stk(lC),
$ LDC ,stk(lU),LDU ,istk(lIWORK),stk(lDWORK),NDWORK ,
$ INFO )
endif
C
elseif (LSAME (SCHU ,'S'))THEN
C
if (FLAG (1).EQ.0)THEN
call DTRSYL (TRANA ,TRANB ,1,N ,M ,stk(lA),LDA ,
$ stk(lB), LDB ,stk(lC),LDC ,SCALE ,INFO )
else
call SB04PY (TRANA ,TRANB ,1,N ,M ,stk(lA),LDA ,
$ stk(lB), LDB ,stk(lC),LDC ,SCALE ,stk(lDWORK),INFO)
endif
else
SCALE =ONE
TOL =ZERO
C
C Default tolerance (epsilon_machine) is used.
C
if (FLAG (1).EQ.0)THEN
call SB04ND (SCHU ,ULA ,ULB ,N ,M ,stk(lA),LDA ,
$ stk(lB), LDB ,stk(lC),LDC ,TOL ,istk(lIWORK),
$ stk(lDWORK), NDWORK ,INFO )
else
call SB04RD (SCHU ,ULA ,ULB ,N ,M ,stk(lA),LDA ,
$ stk(lB), LDB ,stk(lC),LDC ,TOL ,istk(lIWORK),
$ stk(lDWORK), NDWORK ,INFO )
endif
C
endif
endif
C
else
C
if (FLAG (1).EQ.0)THEN
DICO ='C'
else
DICO ='D'
endif
if (FLAG (2).NE.1)THEN
FACT ='N'
else
FACT ='F'
call DLASET ('FULL',N ,N ,ZERO ,ONE ,stk(lU),LDU )
endif
C
if (TRANS.EQ.0 )THEN
TRANA ='N'
else
TRANA ='T'
endif
C
if (TASK.EQ.2 )THEN
if (LHS.EQ.2 )THEN
JOB ='B'
else
JOB ='X'
endif
C
call SB03MD (DICO ,JOB ,FACT ,TRANA ,N ,stk(lA), LDA ,
$ stk(lU), LDU ,stk(lC),LDC ,SCALE ,SEP ,FERR, stk(lWR),
$ stk(lWI), istk(lIWORK), stk(lDWORK), NDWORK ,INFO )
C
else
C
call SB03OD (DICO ,FACT ,TRANA ,N ,P ,stk(lA),LDA ,stk(lU),
$ LDU ,stk(lC),LDC ,SCALE ,stk(lWR),stk(lWI),stk(lDWORK),
$ NDWORK ,INFO )
C
endif
endif
C
C form output
C
PERTRB =(TASK.EQ.1 .AND.(INFO.EQ.N +M +1.OR. (FLAG (2)*FLAG (3)
$ .EQ.1.AND. INFO.EQ.1 ))).OR.
$ (TASK.EQ.2 .AND.INFO.EQ.N +1).OR.(TASK.EQ.3 .AND.INFO.EQ.1 )
if (INFO.EQ.0 .OR.PERTRB )THEN
if (LHS.GE.1 )THEN
if (TASK.EQ.3 )THEN
if (TRANS.EQ.0 .AND.P.GT.N )call DLACPY ('UPPER',N ,N ,
$ stk(lC),LDC ,stk(lC),LDA )
if (N.GT.1 )call DLASET ('LOWER',N -1,N -1,ZERO ,ZERO ,
$ stk(lC+2-1 +(1-1)*LDC),LDA )
endif
endif
C
if (TASK.EQ.2 )THEN
if (LHS.GE.2 )THEN
if (N.EQ.ZERO ) SEP =ZERO
if(.NOT.CREATEVAR(NBVARS+1,'d',1,1,lSEP)) RETURN
stk(lSEP)=SEP
LHSVAR(2)=NBVARS
endif
endif
endif
C
C Error and warning handling.
C
if (INFO.GT.0 )THEN
if (TASK.EQ.1 )THEN
if (NSCHUR.EQ.2 )THEN
c . messages from SB04PD
if(INFO.le.M+N) then
c . Failure when computing eigenvalues
call error(24)
elseif(INFO.gt.M+N) then
c . Equation is singular
call error(19)
endif
return
else
if (LSAME (SCHU ,'N')) THEN
c . messages from SB04MD or SB04QD
if(INFO.le.M) then
c . Failure when computing eigenvalues
call error(24)
elseif(INFO.gt.M) then
c . Equation is singular
call error(19)
endif
else
c . Equation is singular
call error(19)
endif
return
endif
elseif (TASK.EQ.2 )THEN
if(INFO.le.N) then
c . Failure when computing eigenvalues
call error(24)
elseif(INFO.gt.N) then
c . Equation is singular
call error(19)
endif
return
elseif (TASK.EQ.3 )THEN
if (INFO.eq.1) then
c . Equation is singular
call error(19)
elseif (INFO.eq.2.or.INFO.eq.3) then
err=1
if(lsame(DICO,'C')) then
c . Matrix is not stable (cont)
call error(269)
else
call error(270)
endif
elseif (INFO.eq.4.or.INFO.eq.5) then
c . not a schur form
call error(270)
elseif (INFO.eq.6) then
c . Failure when computing eigenvalues
call error(24)
endif
return
endif
elseif(INFO.LT.0) then
c . message displayed by slicot or lapack
buf=' '
call error(999)
endif
C
if ((INFO.EQ.0 .OR.PERTRB ).AND.SCALE.NE.ONE )THEN
if (TASK.LE.2 )THEN
TEMP =SCALE
else
TEMP =SCALE **2
endif
WRITE (buf ,'
$ ( '' WARNING: THE RIGHT HAND SIDES WERE '',''SCALED BY'',
$ D13.6, '' TO AVOID OVERFLOW. '' )')TEMP
endif
C
if (INFO.NE.0 .AND..NOT.PERTRB )THEN
call error(1004)
elseif (SCALE.NE.ONE )THEN
call msgs(1000,0)
endif
if (PERTRB )THEN
WRITE (buf ,'
$ ( '' WARNING: THE EQUATION IS (ALMOST) '',
$ ''SINGULAR; PERTURBED VALUES HAVE BEEN USED. '' )')
call msgs(1000,0)
endif
C
RETURN
C *** Last line of LINMEQ ***
end
logical function iscomplex(pos)
include '../stack.h'
integer pos
c
integer iadr,sadr
c
iadr(l)=l+l-1
sadr(l)=(l/2)+1
c
il=iadr(lstk(pos + top - rhs))
if (istk(il).lt.0) il=iadr(istk(il+2))
if (istk(il+3).eq.1) then
iscomplex=.true.
else
iscomplex=.false.
endif
return
end
|