File: intlsqrsolve.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (183 lines) | stat: -rw-r--r-- 4,784 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
      subroutine intlsqrsolve(fname)
c     ----------------------------
c     Scilab lsqrsolve function 
c
c     Copyright INRIA. 
c     Author : Serge Steer INRIA
c     ---------------------------
      character*(*) fname
c      implicit undefined (a-z)
      include '../stack.h'
      integer topk,kres,kjac,kx,m1,n1,lr1,lr,lw,gettype
      logical checklhs,checkrhs,getrmat,getexternal,cremat,jac
      logical type,getscalar
      double precision ftol,xtol,gtol,epsfcn,factor
      integer maxfev,nprint
      external blsqrsolv,bjlsqrsolv,setlsqrsolvf,setlsqrsolvj
      character*(nlgh+1) namef,namej
      common/clsqrsolve/namef,namej
      integer iadr, sadr
      iadr(l)=l+l-1
      sadr(l)=(l/2)+1

      topk = top
      if (.not.checkrhs(fname,3,6)) return
      if (.not.checklhs(fname,1,3)) return

c     checking variable x (number 1)
      kx=top-rhs+1
      if(.not.getrmat(fname,topk,kx,m1,n1,lr1))return
      n=m1*n1

c     checking variable fcn (number 2)
      kres=top-rhs+2
      if (.not.getexternal(fname,topk,kres,namef,type,
     $     setlsqrsolvf)) return
c
c     checking variable m (number 3)
      km=top-rhs+3
      if(.not.getscalar(fname,topk,km,lr3))return
      m=stk(lr3)


c     checking variable jac (number 4)
      jac=.false.
      kjac=0
      iskip=0
      if (rhs.ge.4) then 
         itype=gettype(top-rhs+4) 
         if (itype.eq.13.or.itype.eq.10.or.itype.eq.11.or.
     $        itype.eq.15) then 
            jac=.true.
            kjac=top-rhs+4
            if (.not.getexternal(fname,topk,kjac,namej,
     $           type,setlsqrsolvj)) return
         else
            iskip=1
         endif
      endif

c     checking variable tol (number 5)
      if(rhs.ge.5-iskip) then
         if(.not.getrmat(fname,topk,top-rhs+5-iskip,m5,n5,lr5))return
         if(m5*n5.ne.6) then 
            call error(60)
            return
         endif
         ftol=stk(lr5)
         xtol=stk(lr5+1)
         gtol=stk(lr5+2)
         maxfev=stk(lr5+3)
         epsfcn=stk(lr5+4)
         factor=stk(lr5+5)
         nprint=0
      else
         ftol=1.d-8
         xtol=1.d-8
         gtol=1.d-5
         maxfev=1000
         epsfcn=0
         factor=100.0d0
         nprint=0
      endif

c     checking variable diag (number 6)
      if(rhs.ge.6-iskip) then
         if(.not.getrmat(fname,topk,top-rhs+5-iskip,m6,n6,lr6))return
         ldiag=lr6
c     test m6*n6=n
         mode=2
      else
         mode=1
      endif
      top=top+1
      if (.not.cremat(fname,top,0,m,n,lfjac,lc)) return

c     
c     to keep track of externals 
C     --------------------------
      top=top+1
      lw = lstk(top)
      ilext=iadr(lw)
      istk(ilext)=1
      istk(ilext+1)=ilext+3
      istk(ilext+2)=ilext+6
      istk(ilext+3)=kres
      istk(ilext+4)=kx
      istk(ilext+5)=km
      istk(ilext+6)=kjac
      istk(ilext+7)=kx
      istk(ilext+8)=km
      ilw=ilext+9
      
c     Working areas 
C     -------------------------------------------
      ilpvt=ilw
      lw=sadr(ilpvt+n)
      lqtf=lw
      lw=lqtf+n
      lwa1=lw
      lw=lwa1+n
      lwa2=lw
      lw=lwa2+n
      lwa3=lw
      lw=lwa3+n
      lwa4=lw
      lw=lwa4+m
      lfvec=lw
      lw=lfvec+m
      if(mode.eq.1) then
         ldiag=lw
         lw=lw+n
      endif

      err=lw-lstk(bot)
      if (err .gt. 0) then
         call error(17)
         return
      endif
      lstk(top+1)=lw
      if(jac) then
         call lmder(bjlsqrsolv,m,n,stk(lr1),stk(lfvec),stk(lfjac),m,ftol
     $        ,xtol,gtol,maxfev,stk(ldiag),mode,factor,nprint,info,nfev
     $        ,njev,istk(ilpvt),stk(lqtf),stk(lwa1),stk(lwa2),stk(lwa3)
     $        ,stk(lwa4))

      else
         call lmdif(blsqrsolv,m,n,stk(lr1),stk(lfvec),ftol,xtol,gtol
     $        ,maxfev,epsfcn,stk(ldiag),mode,factor,nprint,info,nfev
     $        ,stk(lfjac),m,istk(ilpvt),stk(lqtf),stk(lwa1),stk(lwa2)
     $        ,stk(lwa3),stk(lwa4))

      endif 
      if(err.gt.0) return
c     
      top=top-2
      if(lhs.eq.1) then
         top=top-rhs+1
         goto 999
      endif
      top=top-rhs+2
      if (.not.cremat(fname,top,0,m,1,lr,lc)) return
      call unsfdcopy(m,stk(lfvec),1,stk(lr),1)
      if(lhs.eq.3) then
c     info = 0   improper input parameters.
c     info = 1   algorithm estimates that the relative error
c     between x and the solution is at most tol.
c     info = 2   number of calls to fcn with iflag = 1 has
c     reached 100*(n+1).
c     info = 3   tol is too small. no further improvement in
c     the approximate solution x is possible.
c     info = 4   iteration is not making good progress.
         top=top+1
         if (.not.cremat(fname,top,0,1,1,lr,lc)) return
         stk(lr)=info
      endif
      goto 999
      
c     
 999  continue
      return
      end