1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
* an orthogonal similarity transformation: Q' * A * Q = H .
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that A is already upper triangular in rows
* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
* set by a previous call to DGEBAL; otherwise they should be
* set to 1 and N respectively. See Further Details.
* 1 <= ILO <= IHI <= max(1,N).
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the n by n general matrix to be reduced.
* On exit, the upper triangle and the first subdiagonal of A
* are overwritten with the upper Hessenberg matrix H, and the
* elements below the first subdiagonal, with the array TAU,
* represent the orthogonal matrix Q as a product of elementary
* reflectors. See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* TAU (output) DOUBLE PRECISION array, dimension (N-1)
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of (ihi-ilo) elementary
* reflectors
*
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
* exit in A(i+2:ihi,i), and tau in TAU(i).
*
* The contents of A are illustrated by the following example, with
* n = 7, ilo = 2 and ihi = 6:
*
* on entry, on exit,
*
* ( a a a a a a a ) ( a a h h h h a )
* ( a a a a a a ) ( a h h h h a )
* ( a a a a a a ) ( h h h h h h )
* ( a a a a a a ) ( v2 h h h h h )
* ( a a a a a a ) ( v2 v3 h h h h )
* ( a a a a a a ) ( v2 v3 v4 h h h )
* ( a ) ( a )
*
* where a denotes an element of the original matrix A, h denotes a
* modified element of the upper Hessenberg matrix H, and vi denotes an
* element of the vector defining H(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION AII
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DLARFG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEHD2', -INFO )
RETURN
END IF
*
DO 10 I = ILO, IHI - 1
*
* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
*
CALL DLARFG( IHI-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
$ TAU( I ) )
AII = A( I+1, I )
A( I+1, I ) = ONE
*
* Apply H(i) to A(1:ihi,i+1:ihi) from the right
*
CALL DLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
$ A( 1, I+1 ), LDA, WORK )
*
* Apply H(i) to A(i+1:ihi,i+1:n) from the left
*
CALL DLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1, TAU( I ),
$ A( I+1, I+1 ), LDA, WORK )
*
A( I+1, I ) = AII
10 CONTINUE
*
RETURN
*
* End of DGEHD2
*
END
|