1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
$ WORK, INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGELSX computes the minimum-norm solution to a real linear least
* squares problem:
* minimize || A * X - B ||
* using a complete orthogonal factorization of A. A is an M-by-N
* matrix which may be rank-deficient.
*
* Several right hand side vectors b and solution vectors x can be
* handled in a single call; they are stored as the columns of the
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
* matrix X.
*
* The routine first computes a QR factorization with column pivoting:
* A * P = Q * [ R11 R12 ]
* [ 0 R22 ]
* with R11 defined as the largest leading submatrix whose estimated
* condition number is less than 1/RCOND. The order of R11, RANK,
* is the effective rank of A.
*
* Then, R22 is considered to be negligible, and R12 is annihilated
* by orthogonal transformations from the right, arriving at the
* complete orthogonal factorization:
* A * P = Q * [ T11 0 ] * Z
* [ 0 0 ]
* The minimum-norm solution is then
* X = P * Z' [ inv(T11)*Q1'*B ]
* [ 0 ]
* where Q1 consists of the first RANK columns of Q.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of
* columns of matrices B and X. NRHS >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A has been overwritten by details of its
* complete orthogonal factorization.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the M-by-NRHS right hand side matrix B.
* On exit, the N-by-NRHS solution matrix X.
* If m >= n and RANK = n, the residual sum-of-squares for
* the solution in the i-th column is given by the sum of
* squares of elements N+1:M in that column.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,M,N).
*
* JPVT (input/output) INTEGER array, dimension (N)
* On entry, if JPVT(i) .ne. 0, the i-th column of A is an
* initial column, otherwise it is a free column. Before
* the QR factorization of A, all initial columns are
* permuted to the leading positions; only the remaining
* free columns are moved as a result of column pivoting
* during the factorization.
* On exit, if JPVT(i) = k, then the i-th column of A*P
* was the k-th column of A.
*
* RCOND (input) DOUBLE PRECISION
* RCOND is used to determine the effective rank of A, which
* is defined as the order of the largest leading triangular
* submatrix R11 in the QR factorization with pivoting of A,
* whose estimated condition number < 1/RCOND.
*
* RANK (output) INTEGER
* The effective rank of A, i.e., the order of the submatrix
* R11. This is the same as the order of the submatrix T11
* in the complete orthogonal factorization of A.
*
* WORK (workspace) DOUBLE PRECISION array, dimension
* (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ZERO, ONE, DONE, NTDONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
$ NTDONE = ONE )
* ..
* .. Local Scalars ..
INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
$ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEQPF, DLABAD, DLAIC1, DLASCL, DLASET, DLATZM,
$ DORM2R, DTRSM, DTZRQF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
ISMIN = MN + 1
ISMAX = 2*MN + 1
*
* Test the input arguments.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -7
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELSX', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
RANK = 0
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
RANK = 0
GO TO 100
END IF
*
BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
IBSCL = 2
END IF
*
* Compute QR factorization with column pivoting of A:
* A * P = Q * R
*
CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
*
* workspace 3*N. Details of Householder rotations stored
* in WORK(1:MN).
*
* Determine RANK using incremental condition estimation
*
WORK( ISMIN ) = ONE
WORK( ISMAX ) = ONE
SMAX = ABS( A( 1, 1 ) )
SMIN = SMAX
IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
RANK = 0
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
GO TO 100
ELSE
RANK = 1
END IF
*
10 CONTINUE
IF( RANK.LT.MN ) THEN
I = RANK + 1
CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
$ A( I, I ), SMINPR, S1, C1 )
CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
$ A( I, I ), SMAXPR, S2, C2 )
*
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
DO 20 I = 1, RANK
WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
20 CONTINUE
WORK( ISMIN+RANK ) = C1
WORK( ISMAX+RANK ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 10
END IF
END IF
*
* Logically partition R = [ R11 R12 ]
* [ 0 R22 ]
* where R11 = R(1:RANK,1:RANK)
*
* [R11,R12] = [ T11, 0 ] * Y
*
IF( RANK.LT.N )
$ CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
*
* Details of Householder rotations stored in WORK(MN+1:2*MN)
*
* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
*
CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
$ B, LDB, WORK( 2*MN+1 ), INFO )
*
* workspace NRHS
*
* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
*
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, ONE, A, LDA, B, LDB )
*
DO 40 I = RANK + 1, N
DO 30 J = 1, NRHS
B( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
*
IF( RANK.LT.N ) THEN
DO 50 I = 1, RANK
CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
$ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
$ WORK( 2*MN+1 ) )
50 CONTINUE
END IF
*
* workspace NRHS
*
* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
*
DO 90 J = 1, NRHS
DO 60 I = 1, N
WORK( 2*MN+I ) = NTDONE
60 CONTINUE
DO 80 I = 1, N
IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
IF( JPVT( I ).NE.I ) THEN
K = I
T1 = B( K, J )
T2 = B( JPVT( K ), J )
70 CONTINUE
B( JPVT( K ), J ) = T1
WORK( 2*MN+K ) = DONE
T1 = T2
K = JPVT( K )
T2 = B( JPVT( K ), J )
IF( JPVT( K ).NE.I )
$ GO TO 70
B( I, J ) = T1
WORK( 2*MN+K ) = DONE
END IF
END IF
80 CONTINUE
90 CONTINUE
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
END IF
*
100 CONTINUE
*
RETURN
*
* End of DGELSX
*
END
|