1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DGEQLF computes a QL factorization of a real M-by-N matrix A:
* A = Q * L.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit,
* if m >= n, the lower triangle of the subarray
* A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
* if m <= n, the elements on and below the (n-m)-th
* superdiagonal contain the M-by-N lower trapezoidal matrix L;
* the remaining elements, with the array TAU, represent the
* orthogonal matrix Q as a product of elementary reflectors
* (see Further Details).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimum performance LWORK >= N*NB, where NB is the
* optimal blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of elementary reflectors
*
* Q = H(k) . . . H(2) H(1), where k = min(m,n).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
* A(1:m-k+i-1,n-k+i), and tau in TAU(i).
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, MU, NB,
$ NBMIN, NU, NX
* ..
* .. External Subroutines ..
EXTERNAL DGEQL2, DLARFB, DLARFT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEQLF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Determine the block size.
*
NB = ILAENV( 1, 'DGEQLF', ' ', M, N, -1, -1 )
NBMIN = 2
NX = 1
IWS = N
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'DGEQLF', ' ', M, N, -1, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = N
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'DGEQLF', ' ', M, N, -1,
$ -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code initially.
* The last kk columns are handled by the block method.
*
KI = ( ( K-NX-1 ) / NB )*NB
KK = MIN( K, KI+NB )
*
DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
IB = MIN( K-I+1, NB )
*
* Compute the QL factorization of the current block
* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
*
CALL DGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
$ WORK, IINFO )
IF( N-K+I.GT.1 ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i+ib-1) . . . H(i+1) H(i)
*
CALL DLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
$ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
*
* Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
*
CALL DLARFB( 'Left', 'Transpose', 'Backward',
$ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
$ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
$ WORK( IB+1 ), LDWORK )
END IF
10 CONTINUE
MU = M - K + I + NB - 1
NU = N - K + I + NB - 1
ELSE
MU = M
NU = N
END IF
*
* Use unblocked code to factor the last or only block
*
IF( MU.GT.0 .AND. NU.GT.0 )
$ CALL DGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
*
WORK( 1 ) = IWS
RETURN
*
* End of DGEQLF
*
END
SUBROUTINE DGEQL2( M, N, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGEQL2 computes a QL factorization of a real m by n matrix A:
* A = Q * L.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the m by n matrix A.
* On exit, if m >= n, the lower triangle of the subarray
* A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
* if m <= n, the elements on and below the (n-m)-th
* superdiagonal contain the m by n lower trapezoidal matrix L;
* the remaining elements, with the array TAU, represent the
* orthogonal matrix Q as a product of elementary reflectors
* (see Further Details).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of elementary reflectors
*
* Q = H(k) . . . H(2) H(1), where k = min(m,n).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
* A(1:m-k+i-1,n-k+i), and tau in TAU(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, K
DOUBLE PRECISION AII
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DLARFG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEQL2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = K, 1, -1
*
* Generate elementary reflector H(i) to annihilate
* A(1:m-k+i-1,n-k+i)
*
CALL DLARFG( M-K+I, A( M-K+I, N-K+I ), A( 1, N-K+I ), 1,
$ TAU( I ) )
*
* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left
*
AII = A( M-K+I, N-K+I )
A( M-K+I, N-K+I ) = ONE
CALL DLARF( 'Left', M-K+I, N-K+I-1, A( 1, N-K+I ), 1, TAU( I ),
$ A, LDA, WORK )
A( M-K+I, N-K+I ) = AII
10 CONTINUE
RETURN
*
* End of DGEQL2
*
END
|