File: dhseqr.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (454 lines) | stat: -rw-r--r-- 15,611 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
      SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
     $                   LDZ, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ, JOB
      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DHSEQR computes the eigenvalues of a real upper Hessenberg matrix H
*  and, optionally, the matrices T and Z from the Schur decomposition
*  H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur
*  form), and Z is the orthogonal matrix of Schur vectors.
*
*  Optionally Z may be postmultiplied into an input orthogonal matrix Q,
*  so that this routine can give the Schur factorization of a matrix A
*  which has been reduced to the Hessenberg form H by the orthogonal
*  matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          = 'E':  compute eigenvalues only;
*          = 'S':  compute eigenvalues and the Schur form T.
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  no Schur vectors are computed;
*          = 'I':  Z is initialized to the unit matrix and the matrix Z
*                  of Schur vectors of H is returned;
*          = 'V':  Z must contain an orthogonal matrix Q on entry, and
*                  the product Q*Z is returned.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that H is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to DGEBAL, and then passed to SGEHRD
*          when the matrix output by DGEBAL is reduced to Hessenberg
*          form. Otherwise ILO and IHI should be set to 1 and N
*          respectively.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if JOB = 'S', H contains the upper quasi-triangular
*          matrix T from the Schur decomposition (the Schur form);
*          2-by-2 diagonal blocks (corresponding to complex conjugate
*          pairs of eigenvalues) are returned in standard form, with
*          H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',
*          the contents of H are unspecified on exit.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H. LDH >= max(1,N).
*
*  WR      (output) DOUBLE PRECISION array, dimension (N)
*  WI      (output) DOUBLE PRECISION array, dimension (N)
*          The real and imaginary parts, respectively, of the computed
*          eigenvalues. If two eigenvalues are computed as a complex
*          conjugate pair, they are stored in consecutive elements of
*          WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
*          WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the
*          same order as on the diagonal of the Schur form returned in
*          H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
*          diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and
*          WI(i+1) = -WI(i).
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
*          If COMPZ = 'N': Z is not referenced.
*          If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
*          contains the orthogonal matrix Z of the Schur vectors of H.
*          If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
*          which is assumed to be equal to the unit matrix except for
*          the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
*          Normally Q is the orthogonal matrix generated by DORGHR after
*          the call to DGEHRD which formed the Hessenberg matrix H.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.
*          LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  LWORK   (input) INTEGER
*          This argument is currently redundant.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, DHSEQR failed to compute all of the
*                eigenvalues in a total of 30*(IHI-ILO+1) iterations;
*                elements 1:ilo-1 and i+1:n of WR and WI contain those
*                eigenvalues which have been successfully computed.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
      DOUBLE PRECISION   CONST
      PARAMETER          ( CONST = 1.5D+0 )
      INTEGER            NSMAX, LDS
      PARAMETER          ( NSMAX = 15, LDS = NSMAX )
*     ..
*     .. Local Scalars ..
      LOGICAL            INITZ, WANTT, WANTZ
      INTEGER            I, I1, I2, IERR, II, ITEMP, ITN, ITS, J, K, L,
     $                   MAXB, NH, NR, NS, NV
      DOUBLE PRECISION   ABSW, OVFL, SMLNUM, TAU, TEMP, TST1, ULP, UNFL
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   S( LDS, NSMAX ), V( NSMAX+1 ), VV( NSMAX+1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DLANHS, DLAPY2
      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANHS, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMV, DLABAD, DLACPY, DLAHQR, DLARFG,
     $                   DLARFX, DLASET, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTT = LSAME( JOB, 'S' )
      INITZ = LSAME( COMPZ, 'I' )
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DHSEQR', -INFO )
         RETURN
      END IF
*
*     Initialize Z, if necessary
*
      IF( INITZ )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
*     Store the eigenvalues isolated by DGEBAL.
*
      DO 10 I = 1, ILO - 1
         WR( I ) = H( I, I )
         WI( I ) = ZERO
   10 CONTINUE
      DO 20 I = IHI + 1, N
         WR( I ) = H( I, I )
         WI( I ) = ZERO
   20 CONTINUE
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
      IF( ILO.EQ.IHI ) THEN
         WR( ILO ) = H( ILO, ILO )
         WI( ILO ) = ZERO
         RETURN
      END IF
*
*     Set rows and columns ILO to IHI to zero below the first
*     subdiagonal.
*
      DO 40 J = ILO, IHI - 2
         DO 30 I = J + 2, N
            H( I, J ) = ZERO
   30    CONTINUE
   40 CONTINUE
      NH = IHI - ILO + 1
*
*     Determine the order of the multi-shift QR algorithm to be used.
*
      NS = ILAENV( 4, 'DHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      MAXB = ILAENV( 8, 'DHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      IF( NS.LE.2 .OR. NS.GT.NH .OR. MAXB.GE.NH ) THEN
*
*        Use the standard double-shift algorithm
*
         CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
     $                IHI, Z, LDZ, INFO )
         RETURN
      END IF
      MAXB = MAX( 3, MAXB )
      NS = MIN( NS, MAXB, NSMAX )
*
*     Now 2 < NS <= MAXB < NH.
*
*     Set machine-dependent constants for the stopping criterion.
*     If norm(H) <= sqrt(OVFL), overflow should not occur.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( NH / ULP )
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
*
*     ITN is the total number of multiple-shift QR iterations allowed.
*
      ITN = 30*NH
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of at most MAXB. Each iteration of the loop
*     works with the active submatrix in rows and columns L to I.
*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
*     H(L,L-1) is negligible so that the matrix splits.
*
      I = IHI
   50 CONTINUE
      L = ILO
      IF( I.LT.ILO )
     $   GO TO 170
*
*     Perform multiple-shift QR iterations on rows and columns ILO to I
*     until a submatrix of order at most MAXB splits off at the bottom
*     because a subdiagonal element has become negligible.
*
      DO 150 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         DO 60 K = I, L + 1, -1
            TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
            IF( TST1.EQ.ZERO )
     $         TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
            IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 70
   60    CONTINUE
   70    CONTINUE
         L = K
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible.
*
            H( L, L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order <= MAXB has split off.
*
         IF( L.GE.I-MAXB+1 )
     $      GO TO 160
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
         IF( ITS.EQ.20 .OR. ITS.EQ.30 ) THEN
*
*           Exceptional shifts.
*
            DO 80 II = I - NS + 1, I
               WR( II ) = CONST*( ABS( H( II, II-1 ) )+
     $                    ABS( H( II, II ) ) )
               WI( II ) = ZERO
   80       CONTINUE
         ELSE
*
*           Use eigenvalues of trailing submatrix of order NS as shifts.
*
            CALL DLACPY( 'Full', NS, NS, H( I-NS+1, I-NS+1 ), LDH, S,
     $                   LDS )
            CALL DLAHQR( .FALSE., .FALSE., NS, 1, NS, S, LDS,
     $                   WR( I-NS+1 ), WI( I-NS+1 ), 1, NS, Z, LDZ,
     $                   IERR )
            IF( IERR.GT.0 ) THEN
*
*              If DLAHQR failed to compute all NS eigenvalues, use the
*              unconverged diagonal elements as the remaining shifts.
*
               DO 90 II = 1, IERR
                  WR( I-NS+II ) = S( II, II )
                  WI( I-NS+II ) = ZERO
   90          CONTINUE
            END IF
         END IF
*
*        Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
*        where G is the Hessenberg submatrix H(L:I,L:I) and w is
*        the vector of shifts (stored in WR and WI). The result is
*        stored in the local array V.
*
         V( 1 ) = ONE
         DO 100 II = 2, NS + 1
            V( II ) = ZERO
  100    CONTINUE
         NV = 1
         DO 120 J = I - NS + 1, I
            IF( WI( J ).GE.ZERO ) THEN
               IF( WI( J ).EQ.ZERO ) THEN
*
*                 real shift
*
                  CALL DCOPY( NV+1, V, 1, VV, 1 )
                  CALL DGEMV( 'No transpose', NV+1, NV, ONE, H( L, L ),
     $                        LDH, VV, 1, -WR( J ), V, 1 )
                  NV = NV + 1
               ELSE IF( WI( J ).GT.ZERO ) THEN
*
*                 complex conjugate pair of shifts
*
                  CALL DCOPY( NV+1, V, 1, VV, 1 )
                  CALL DGEMV( 'No transpose', NV+1, NV, ONE, H( L, L ),
     $                        LDH, V, 1, -TWO*WR( J ), VV, 1 )
                  ITEMP = IDAMAX( NV+1, VV, 1 )
                  TEMP = ONE / MAX( ABS( VV( ITEMP ) ), SMLNUM )
                  CALL DSCAL( NV+1, TEMP, VV, 1 )
                  ABSW = DLAPY2( WR( J ), WI( J ) )
                  TEMP = ( TEMP*ABSW )*ABSW
                  CALL DGEMV( 'No transpose', NV+2, NV+1, ONE,
     $                        H( L, L ), LDH, VV, 1, TEMP, V, 1 )
                  NV = NV + 2
               END IF
*
*              Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
*              reset it to the unit vector.
*
               ITEMP = IDAMAX( NV, V, 1 )
               TEMP = ABS( V( ITEMP ) )
               IF( TEMP.EQ.ZERO ) THEN
                  V( 1 ) = ONE
                  DO 110 II = 2, NV
                     V( II ) = ZERO
  110             CONTINUE
               ELSE
                  TEMP = MAX( TEMP, SMLNUM )
                  CALL DSCAL( NV, ONE / TEMP, V, 1 )
               END IF
            END IF
  120    CONTINUE
*
*        Multiple-shift QR step
*
         DO 140 K = L, I - 1
*
*           The first iteration of this loop determines a reflection G
*           from the vector V and applies it from left and right to H,
*           thus creating a nonzero bulge below the subdiagonal.
*
*           Each subsequent iteration determines a reflection G to
*           restore the Hessenberg form in the (K-1)th column, and thus
*           chases the bulge one step toward the bottom of the active
*           submatrix. NR is the order of G.
*
            NR = MIN( NS+1, I-K+1 )
            IF( K.GT.L )
     $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
            CALL DLARFG( NR, V( 1 ), V( 2 ), 1, TAU )
            IF( K.GT.L ) THEN
               H( K, K-1 ) = V( 1 )
               DO 130 II = K + 1, I
                  H( II, K-1 ) = ZERO
  130          CONTINUE
            END IF
            V( 1 ) = ONE
*
*           Apply G from the left to transform the rows of the matrix in
*           columns K to I2.
*
            CALL DLARFX( 'Left', NR, I2-K+1, V, TAU, H( K, K ), LDH,
     $                   WORK )
*
*           Apply G from the right to transform the columns of the
*           matrix in rows I1 to min(K+NR,I).
*
            CALL DLARFX( 'Right', MIN( K+NR, I )-I1+1, NR, V, TAU,
     $                   H( I1, K ), LDH, WORK )
*
            IF( WANTZ ) THEN
*
*              Accumulate transformations in the matrix Z
*
               CALL DLARFX( 'Right', NH, NR, V, TAU, Z( ILO, K ), LDZ,
     $                      WORK )
            END IF
  140    CONTINUE
*
  150 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  160 CONTINUE
*
*     A submatrix of order <= MAXB in rows and columns L to I has split
*     off. Use the double-shift QR algorithm to handle it.
*
      CALL DLAHQR( WANTT, WANTZ, N, L, I, H, LDH, WR, WI, ILO, IHI, Z,
     $             LDZ, INFO )
      IF( INFO.GT.0 )
     $   RETURN
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with a new value of I.
*
      ITN = ITN - ITS
      I = L - 1
      GO TO 50
*
  170 CONTINUE
      RETURN
*
*     End of DHSEQR
*
      END