1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
$ WR2, WI )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
INTEGER LDA, LDB
DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
* problem A - w B, with scaling as necessary to avoid over-/underflow.
*
* The scaling factor "s" results in a modified eigenvalue equation
*
* s A - w B
*
* where s is a non-negative scaling factor chosen so that w, w B,
* and s A do not overflow and, if possible, do not underflow, either.
*
* Arguments
* =========
*
* A (input) DOUBLE PRECISION array, dimension (LDA, 2)
* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
* is less than 1/SAFMIN. Entries less than
* sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= 2.
*
* B (input) DOUBLE PRECISION array, dimension (LDB, 2)
* On entry, the 2 x 2 upper triangular matrix B. It is
* assumed that the one-norm of B is less than 1/SAFMIN. The
* diagonals should be at least sqrt(SAFMIN) times the largest
* element of B (in absolute value); if a diagonal is smaller
* than that, then +/- sqrt(SAFMIN) will be used instead of
* that diagonal.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= 2.
*
* SAFMIN (input) DOUBLE PRECISION
* The smallest positive number s.t. 1/SAFMIN does not
* overflow. (This should always be DLAMCH('S') -- it is an
* argument in order to avoid having to call DLAMCH frequently.)
*
* SCALE1 (output) DOUBLE PRECISION
* A scaling factor used to avoid over-/underflow in the
* eigenvalue equation which defines the first eigenvalue. If
* the eigenvalues are complex, then the eigenvalues are
* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the
* exponent range of the machine), SCALE1=SCALE2, and SCALE1
* will always be positive. If the eigenvalues are real, then
* the first (real) eigenvalue is WR1 / SCALE1 , but this may
* overflow or underflow, and in fact, SCALE1 may be zero or
* less than the underflow threshhold if the exact eigenvalue
* is sufficiently large.
*
* SCALE2 (output) DOUBLE PRECISION
* A scaling factor used to avoid over-/underflow in the
* eigenvalue equation which defines the second eigenvalue. If
* the eigenvalues are complex, then SCALE2=SCALE1. If the
* eigenvalues are real, then the second (real) eigenvalue is
* WR2 / SCALE2 , but this may overflow or underflow, and in
* fact, SCALE2 may be zero or less than the underflow
* threshhold if the exact eigenvalue is sufficiently large.
*
* WR1 (output) DOUBLE PRECISION
* If the eigenvalue is real, then WR1 is SCALE1 times the
* eigenvalue closest to the (2,2) element of A B**(-1). If the
* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
* part of the eigenvalues.
*
* WR2 (output) DOUBLE PRECISION
* If the eigenvalue is real, then WR2 is SCALE2 times the
* other eigenvalue. If the eigenvalue is complex, then
* WR1=WR2 is SCALE1 times the real part of the eigenvalues.
*
* WI (output) DOUBLE PRECISION
* If the eigenvalue is real, then WI is zero. If the
* eigenvalue is complex, then WI is SCALE1 times the imaginary
* part of the eigenvalues. WI will always be non-negative.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = ONE / TWO )
DOUBLE PRECISION FUZZY1
PARAMETER ( FUZZY1 = ONE+1.0D-5 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
$ AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
$ BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
$ DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
$ SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
$ WSCALE, WSIZE, WSMALL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SIGN, SQRT
* ..
* .. Executable Statements ..
*
RTMIN = SQRT( SAFMIN )
RTMAX = ONE / RTMIN
SAFMAX = ONE / SAFMIN
*
* Scale A
*
ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
$ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
ASCALE = ONE / ANORM
A11 = ASCALE*A( 1, 1 )
A21 = ASCALE*A( 2, 1 )
A12 = ASCALE*A( 1, 2 )
A22 = ASCALE*A( 2, 2 )
*
* Perturb B if necessary to insure non-singularity
*
B11 = B( 1, 1 )
B12 = B( 1, 2 )
B22 = B( 2, 2 )
BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
IF( ABS( B11 ).LT.BMIN )
$ B11 = SIGN( BMIN, B11 )
IF( ABS( B22 ).LT.BMIN )
$ B22 = SIGN( BMIN, B22 )
*
* Scale B
*
BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
BSCALE = ONE / BSIZE
B11 = B11*BSCALE
B12 = B12*BSCALE
B22 = B22*BSCALE
*
* Compute larger eigenvalue by method described by C. van Loan
*
* ( AS is A shifted by -SHIFT*B )
*
BINV11 = ONE / B11
BINV22 = ONE / B22
S1 = A11*BINV11
S2 = A22*BINV22
IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
AS12 = A12 - S1*B12
AS22 = A22 - S1*B22
SS = A21*( BINV11*BINV22 )
ABI22 = AS22*BINV22 - SS*B12
PP = HALF*ABI22
SHIFT = S1
ELSE
AS12 = A12 - S2*B12
AS11 = A11 - S2*B11
SS = A21*( BINV11*BINV22 )
ABI22 = -SS*B12
PP = HALF*( AS11*BINV11+ABI22 )
SHIFT = S2
END IF
QQ = SS*AS12
IF( ABS( PP*RTMIN ).GE.ONE ) THEN
DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
R = SQRT( ABS( DISCR ) )*RTMAX
ELSE
IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
R = SQRT( ABS( DISCR ) )*RTMIN
ELSE
DISCR = PP**2 + QQ
R = SQRT( ABS( DISCR ) )
END IF
END IF
*
* Note: the test of R in the following IF is to cover the case when
* DISCR is small and negative and is flushed to zero during
* the calculation of R. On machines which have a consistent
* flush-to-zero threshhold and handle numbers above that
* threshhold correctly, it would not be necessary.
*
IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
SUM = PP + SIGN( R, PP )
DIFF = PP - SIGN( R, PP )
WBIG = SHIFT + SUM
*
* Compute smaller eigenvalue
*
WSMALL = SHIFT + DIFF
IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
WSMALL = WDET / WBIG
END IF
*
* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
* for WR1.
*
IF( PP.GT.ABI22 ) THEN
WR1 = MIN( WBIG, WSMALL )
WR2 = MAX( WBIG, WSMALL )
ELSE
WR1 = MAX( WBIG, WSMALL )
WR2 = MIN( WBIG, WSMALL )
END IF
WI = ZERO
ELSE
*
* Complex eigenvalues
*
WR1 = SHIFT + PP
WR2 = WR1
WI = R
END IF
*
* Further scaling to avoid underflow and overflow in computing
* SCALE1 and overflow in computing w*B.
*
* This scale factor (WSCALE) is bounded from above using C1 and C2,
* and from below using C3 and C4.
* C1 implements the condition s A must never overflow.
* C2 implements the condition w B must never overflow.
* C3, with C2,
* implement the condition that s A - w B must never overflow.
* C4 implements the condition s should not underflow.
* C5 implements the condition max(s,|w|) should be at least 2.
*
C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
C2 = SAFMIN*MAX( ONE, BNORM )
C3 = BSIZE*SAFMIN
IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
ELSE
C4 = ONE
END IF
IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
C5 = MIN( ONE, ASCALE*BSIZE )
ELSE
C5 = ONE
END IF
*
* Scale first eigenvalue
*
WABS = ABS( WR1 ) + ABS( WI )
WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
$ MIN( C4, HALF*MAX( WABS, C5 ) ) )
IF( WSIZE.NE.ONE ) THEN
WSCALE = ONE / WSIZE
IF( WSIZE.GT.ONE ) THEN
SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
$ MIN( ASCALE, BSIZE )
ELSE
SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
$ MAX( ASCALE, BSIZE )
END IF
WR1 = WR1*WSCALE
IF( WI.NE.ZERO ) THEN
WI = WI*WSCALE
WR2 = WR1
SCALE2 = SCALE1
END IF
ELSE
SCALE1 = ASCALE*BSIZE
SCALE2 = SCALE1
END IF
*
* Scale second eigenvalue (if real)
*
IF( WI.EQ.ZERO ) THEN
WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
$ MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
IF( WSIZE.NE.ONE ) THEN
WSCALE = ONE / WSIZE
IF( WSIZE.GT.ONE ) THEN
SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
$ MIN( ASCALE, BSIZE )
ELSE
SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
$ MAX( ASCALE, BSIZE )
END IF
WR2 = WR2*WSCALE
ELSE
SCALE2 = ASCALE*BSIZE
END IF
END IF
*
* End of DLAG2
*
RETURN
END
|