1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLANSP returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real symmetric matrix A, supplied in packed form.
*
* Description
* ===========
*
* DLANSP returns the value
*
* DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in DLANSP as described
* above.
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is supplied.
* = 'U': Upper triangular part of A is supplied
* = 'L': Lower triangular part of A is supplied
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, DLANSP is
* set to zero.
*
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The upper or lower triangle of the symmetric matrix A, packed
* columnwise in a linear array. The j-th column of A is stored
* in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
* WORK is not referenced.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
K = 1
DO 20 J = 1, N
DO 10 I = K, K + J - 1
VALUE = MAX( VALUE, ABS( AP( I ) ) )
10 CONTINUE
K = K + J
20 CONTINUE
ELSE
K = 1
DO 40 J = 1, N
DO 30 I = K, K + N - J
VALUE = MAX( VALUE, ABS( AP( I ) ) )
30 CONTINUE
K = K + N - J + 1
40 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
$ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is symmetric).
*
VALUE = ZERO
K = 1
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
SUM = ZERO
DO 50 I = 1, J - 1
ABSA = ABS( AP( K ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
K = K + 1
50 CONTINUE
WORK( J ) = SUM + ABS( AP( K ) )
K = K + 1
60 CONTINUE
DO 70 I = 1, N
VALUE = MAX( VALUE, WORK( I ) )
70 CONTINUE
ELSE
DO 80 I = 1, N
WORK( I ) = ZERO
80 CONTINUE
DO 100 J = 1, N
SUM = WORK( J ) + ABS( AP( K ) )
K = K + 1
DO 90 I = J + 1, N
ABSA = ABS( AP( K ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
K = K + 1
90 CONTINUE
VALUE = MAX( VALUE, SUM )
100 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
K = 2
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
K = K + J
110 CONTINUE
ELSE
DO 120 J = 1, N - 1
CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
K = K + N - J + 1
120 CONTINUE
END IF
SUM = 2*SUM
K = 1
DO 130 I = 1, N
IF( AP( K ).NE.ZERO ) THEN
ABSA = ABS( AP( K ) )
IF( SCALE.LT.ABSA ) THEN
SUM = ONE + SUM*( SCALE / ABSA )**2
SCALE = ABSA
ELSE
SUM = SUM + ( ABSA / SCALE )**2
END IF
END IF
IF( LSAME( UPLO, 'U' ) ) THEN
K = K + I + 1
ELSE
K = K + N - I + 1
END IF
130 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
DLANSP = VALUE
RETURN
*
* End of DLANSP
*
END
|