File: dorghr.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (144 lines) | stat: -rw-r--r-- 4,137 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
      SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DORGHR generates a real orthogonal matrix Q which is defined as the
*  product of IHI-ILO elementary reflectors of order N, as returned by
*  DGEHRD:
*
*  Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix Q. N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          ILO and IHI must have the same values as in the previous call
*          of DGEHRD. Q is equal to the unit matrix except in the
*          submatrix Q(ilo+1:ihi,ilo+1:ihi).
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by DGEHRD.
*          On exit, the N-by-N orthogonal matrix Q.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  TAU     (input) DOUBLE PRECISION array, dimension (N-1)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DGEHRD.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= IHI-ILO.
*          For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*          the optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO, J, NH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, IHI-ILO ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGHR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Shift the vectors which define the elementary reflectors one
*     column to the right, and set the first ilo and the last n-ihi
*     rows and columns to those of the unit matrix
*
      DO 40 J = IHI, ILO + 1, -1
         DO 10 I = 1, J - 1
            A( I, J ) = ZERO
   10    CONTINUE
         DO 20 I = J + 1, IHI
            A( I, J ) = A( I, J-1 )
   20    CONTINUE
         DO 30 I = IHI + 1, N
            A( I, J ) = ZERO
   30    CONTINUE
   40 CONTINUE
      DO 60 J = 1, ILO
         DO 50 I = 1, N
            A( I, J ) = ZERO
   50    CONTINUE
         A( J, J ) = ONE
   60 CONTINUE
      DO 80 J = IHI + 1, N
         DO 70 I = 1, N
            A( I, J ) = ZERO
   70    CONTINUE
         A( J, J ) = ONE
   80 CONTINUE
*
      NH = IHI - ILO
      IF( NH.GT.0 ) THEN
*
*        Generate Q(ilo+1:ihi,ilo+1:ihi)
*
         CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
     $                WORK, LWORK, IINFO )
      END IF
      RETURN
*
*     End of DORGHR
*
      END