1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DORGHR generates a real orthogonal matrix Q which is defined as the
* product of IHI-ILO elementary reflectors of order N, as returned by
* DGEHRD:
*
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix Q. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI must have the same values as in the previous call
* of DGEHRD. Q is equal to the unit matrix except in the
* submatrix Q(ilo+1:ihi,ilo+1:ihi).
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the vectors which define the elementary reflectors,
* as returned by DGEHRD.
* On exit, the N-by-N orthogonal matrix Q.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DGEHRD.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= IHI-ILO.
* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
* the optimal blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IINFO, J, NH
* ..
* .. External Subroutines ..
EXTERNAL DORGQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, IHI-ILO ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGHR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first ilo and the last n-ihi
* rows and columns to those of the unit matrix
*
DO 40 J = IHI, ILO + 1, -1
DO 10 I = 1, J - 1
A( I, J ) = ZERO
10 CONTINUE
DO 20 I = J + 1, IHI
A( I, J ) = A( I, J-1 )
20 CONTINUE
DO 30 I = IHI + 1, N
A( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
DO 60 J = 1, ILO
DO 50 I = 1, N
A( I, J ) = ZERO
50 CONTINUE
A( J, J ) = ONE
60 CONTINUE
DO 80 J = IHI + 1, N
DO 70 I = 1, N
A( I, J ) = ZERO
70 CONTINUE
A( J, J ) = ONE
80 CONTINUE
*
NH = IHI - ILO
IF( NH.GT.0 ) THEN
*
* Generate Q(ilo+1:ihi,ilo+1:ihi)
*
CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
$ WORK, LWORK, IINFO )
END IF
RETURN
*
* End of DORGHR
*
END
|