1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
SUBROUTINE DORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DORGTR generates a real orthogonal matrix Q which is defined as the
* product of n-1 elementary reflectors of order N, as returned by
* DSYTRD:
*
* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*
* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A contains elementary reflectors
* from DSYTRD;
* = 'L': Lower triangle of A contains elementary reflectors
* from DSYTRD.
*
* N (input) INTEGER
* The order of the matrix Q. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the vectors which define the elementary reflectors,
* as returned by DSYTRD.
* On exit, the N-by-N orthogonal matrix Q.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DSYTRD.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N-1).
* For optimum performance LWORK >= (N-1)*NB, where NB is
* the optimal blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IINFO, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DORGQL, DORGQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, N-1 ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGTR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( UPPER ) THEN
*
* Q was determined by a call to DSYTRD with UPLO = 'U'
*
* Shift the vectors which define the elementary reflectors one
* column to the left, and set the last row and column of Q to
* those of the unit matrix
*
DO 20 J = 1, N - 1
DO 10 I = 1, J - 1
A( I, J ) = A( I, J+1 )
10 CONTINUE
A( N, J ) = ZERO
20 CONTINUE
DO 30 I = 1, N - 1
A( I, N ) = ZERO
30 CONTINUE
A( N, N ) = ONE
*
* Generate Q(1:n-1,1:n-1)
*
CALL DORGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
* Q was determined by a call to DSYTRD with UPLO = 'L'.
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first row and column of Q to
* those of the unit matrix
*
DO 50 J = N, 2, -1
A( 1, J ) = ZERO
DO 40 I = J + 1, N
A( I, J ) = A( I, J-1 )
40 CONTINUE
50 CONTINUE
A( 1, 1 ) = ONE
DO 60 I = 2, N
A( I, 1 ) = ZERO
60 CONTINUE
IF( N.GT.1 ) THEN
*
* Generate Q(2:n,2:n)
*
CALL DORGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
$ LWORK, IINFO )
END IF
END IF
RETURN
*
* End of DORGTR
*
END
|