1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
$ LDC, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DORMHR overwrites the general real M-by-N matrix C with
*
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': Q * C C * Q
* TRANS = 'T': Q**T * C C * Q**T
*
* where Q is a real orthogonal matrix of order nq, with nq = m if
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
* IHI-ILO elementary reflectors, as returned by DGEHRD:
*
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q**T from the Left;
* = 'R': apply Q or Q**T from the Right.
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, apply Q;
* = 'T': Transpose, apply Q**T.
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI must have the same values as in the previous call
* of DGEHRD. Q is equal to the unit matrix except in the
* submatrix Q(ilo+1:ihi,ilo+1:ihi).
* If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
* ILO = 1 and IHI = 0, if M = 0;
* if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
* ILO = 1 and IHI = 0, if N = 0.
*
* A (input) DOUBLE PRECISION array, dimension
* (LDA,M) if SIDE = 'L'
* (LDA,N) if SIDE = 'R'
* The vectors which define the elementary reflectors, as
* returned by DGEHRD.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*
* TAU (input) DOUBLE PRECISION array, dimension
* (M-1) if SIDE = 'L'
* (N-1) if SIDE = 'R'
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DGEHRD.
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If SIDE = 'L', LWORK >= max(1,N);
* if SIDE = 'R', LWORK >= max(1,M).
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
* blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFT
INTEGER I1, I2, IINFO, MI, NH, NI, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DORMQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
*
* NQ is the order of Q and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
$ THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, NQ ) ) THEN
INFO = -5
ELSE IF( IHI.LT.MIN( ILO, NQ ) .OR. IHI.GT.NQ ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( LWORK.LT.MAX( 1, NW ) ) THEN
INFO = -13
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORMHR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
NH = IHI - ILO
IF( M.EQ.0 .OR. N.EQ.0 .OR. NH.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( LEFT ) THEN
MI = NH
NI = N
I1 = ILO + 1
I2 = 1
ELSE
MI = M
NI = NH
I1 = 1
I2 = ILO + 1
END IF
*
CALL DORMQR( SIDE, TRANS, MI, NI, NH, A( ILO+1, ILO ), LDA,
$ TAU( ILO ), C( I1, I2 ), LDC, WORK, LWORK, IINFO )
RETURN
*
* End of DORMHR
*
END
|