File: dormhr.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (181 lines) | stat: -rw-r--r-- 5,538 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
      SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
     $                   LDC, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            IHI, ILO, INFO, LDA, LDC, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DORMHR overwrites the general real M-by-N matrix C with
*
*                  SIDE = 'L'     SIDE = 'R'
*  TRANS = 'N':      Q * C          C * Q
*  TRANS = 'T':      Q**T * C       C * Q**T
*
*  where Q is a real orthogonal matrix of order nq, with nq = m if
*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
*  IHI-ILO elementary reflectors, as returned by DGEHRD:
*
*  Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q or Q**T from the Left;
*          = 'R': apply Q or Q**T from the Right.
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, apply Q;
*          = 'T':  Transpose, apply Q**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          ILO and IHI must have the same values as in the previous call
*          of DGEHRD. Q is equal to the unit matrix except in the
*          submatrix Q(ilo+1:ihi,ilo+1:ihi).
*          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
*          ILO = 1 and IHI = 0, if M = 0;
*          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
*          ILO = 1 and IHI = 0, if N = 0.
*
*  A       (input) DOUBLE PRECISION array, dimension
*                               (LDA,M) if SIDE = 'L'
*                               (LDA,N) if SIDE = 'R'
*          The vectors which define the elementary reflectors, as
*          returned by DGEHRD.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*
*  TAU     (input) DOUBLE PRECISION array, dimension
*                               (M-1) if SIDE = 'L'
*                               (N-1) if SIDE = 'R'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DGEHRD.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If SIDE = 'L', LWORK >= max(1,N);
*          if SIDE = 'R', LWORK >= max(1,M).
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*          blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFT
      INTEGER            I1, I2, IINFO, MI, NH, NI, NQ, NW
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DORMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
*
*     NQ is the order of Q and NW is the minimum dimension of WORK
*
      IF( LEFT ) THEN
         NQ = M
         NW = N
      ELSE
         NQ = N
         NW = M
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
     $          THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, NQ ) ) THEN
         INFO = -5
      ELSE IF( IHI.LT.MIN( ILO, NQ ) .OR. IHI.GT.NQ ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX( 1, NW ) ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORMHR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      NH = IHI - ILO
      IF( M.EQ.0 .OR. N.EQ.0 .OR. NH.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( LEFT ) THEN
         MI = NH
         NI = N
         I1 = ILO + 1
         I2 = 1
      ELSE
         MI = M
         NI = NH
         I1 = 1
         I2 = ILO + 1
      END IF
*
      CALL DORMQR( SIDE, TRANS, MI, NI, NH, A( ILO+1, ILO ), LDA,
     $             TAU( ILO ), C( I1, I2 ), LDC, WORK, LWORK, IINFO )
      RETURN
*
*     End of DORMHR
*
      END