1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, ITYPE, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), BP( * )
* ..
*
* Purpose
* =======
*
* DSPGST reduces a real symmetric-definite generalized eigenproblem
* to standard form, using packed storage.
*
* If ITYPE = 1, the problem is A*x = lambda*B*x,
* and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*
* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
* B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
*
* B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
* = 2 or 3: compute U*A*U**T or L**T*A*L.
*
* UPLO (input) CHARACTER
* = 'U': Upper triangle of A is stored and B is factored as
* U**T*U;
* = 'L': Lower triangle of A is stored and B is factored as
* L*L**T.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, if INFO = 0, the transformed matrix, stored in the
* same format as A.
*
* BP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The triangular factor from the Cholesky factorization of B,
* stored in the same format as A, as returned by DPPTRF.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, HALF
PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
DOUBLE PRECISION AJJ, AKK, BJJ, BKK, CT
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL LSAME, DDOT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSPGST', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
IF( UPPER ) THEN
*
* Compute inv(U')*A*inv(U)
*
* J1 and JJ are the indices of A(1,j) and A(j,j)
*
JJ = 0
DO 10 J = 1, N
J1 = JJ + 1
JJ = JJ + J
*
* Compute the j-th column of the upper triangle of A
*
BJJ = BP( JJ )
CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
$ AP( J1 ), 1 )
CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
$ AP( J1 ), 1 )
CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
$ 1 ) ) / BJJ
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L')
*
* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
*
KK = 1
DO 20 K = 1, N
K1K1 = KK + N - K + 1
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = AP( KK )
BKK = BP( KK )
AKK = AKK / BKK**2
AP( KK ) = AKK
IF( K.LT.N ) THEN
CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
CT = -HALF*AKK
CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
$ BP( KK+1 ), 1, AP( K1K1 ) )
CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
$ BP( K1K1 ), AP( KK+1 ), 1 )
END IF
KK = K1K1
20 CONTINUE
END IF
ELSE
IF( UPPER ) THEN
*
* Compute U*A*U'
*
* K1 and KK are the indices of A(1,k) and A(k,k)
*
KK = 0
DO 30 K = 1, N
K1 = KK + 1
KK = KK + K
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = AP( KK )
BKK = BP( KK )
CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
$ AP( K1 ), 1 )
CT = HALF*AKK
CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
$ AP )
CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
AP( KK ) = AKK*BKK**2
30 CONTINUE
ELSE
*
* Compute L'*A*L
*
* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
*
JJ = 1
DO 40 J = 1, N
J1J1 = JJ + N - J + 1
*
* Compute the j-th column of the lower triangle of A
*
AJJ = AP( JJ )
BJJ = BP( JJ )
AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
$ BP( JJ+1 ), 1 )
CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
$ ONE, AP( JJ+1 ), 1 )
CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
$ BP( JJ ), AP( JJ ), 1 )
JJ = J1J1
40 CONTINUE
END IF
END IF
RETURN
*
* End of DSPGST
*
END
|