1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* DSYTRD reduces a real symmetric matrix A to real symmetric
* tridiagonal form T by an orthogonal similarity transformation:
* Q**T * A * Q = T.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* N-by-N upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
* On exit, if UPLO = 'U', the diagonal and first superdiagonal
* of A are overwritten by the corresponding elements of the
* tridiagonal matrix T, and the elements above the first
* superdiagonal, with the array TAU, represent the orthogonal
* matrix Q as a product of elementary reflectors; if UPLO
* = 'L', the diagonal and first subdiagonal of A are over-
* written by the corresponding elements of the tridiagonal
* matrix T, and the elements below the first subdiagonal, with
* the array TAU, represent the orthogonal matrix Q as a product
* of elementary reflectors. See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* D (output) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of the tridiagonal matrix T:
* D(i) = A(i,i).
*
* E (output) DOUBLE PRECISION array, dimension (N-1)
* The off-diagonal elements of the tridiagonal matrix T:
* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
* TAU (output) DOUBLE PRECISION array, dimension (N-1)
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= 1.
* For optimum performance LWORK >= N*NB, where NB is the
* optimal blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(n-1) . . . H(2) H(1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
* A(1:i-1,i+1), and tau in TAU(i).
*
* If UPLO = 'L', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(1) H(2) . . . H(n-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
* and tau in TAU(i).
*
* The contents of A on exit are illustrated by the following examples
* with n = 5:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( d e v2 v3 v4 ) ( d )
* ( d e v3 v4 ) ( e d )
* ( d e v4 ) ( v1 e d )
* ( d e ) ( v1 v2 e d )
* ( d ) ( v1 v2 v3 e d )
*
* where d and e denote diagonal and off-diagonal elements of T, and vi
* denotes an element of the vector defining H(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IINFO, IWS, J, KK, LDWORK, NB, NBMIN, NX
* ..
* .. External Subroutines ..
EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.1 ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYTRD', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Determine the block size.
*
NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
NX = N
IWS = 1
IF( NB.GT.1 .AND. NB.LT.N ) THEN
*
* Determine when to cross over from blocked to unblocked code
* (last block is always handled by unblocked code).
*
NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
IF( NX.LT.N ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = N
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: determine the
* minimum value of NB, and reduce NB or force use of
* unblocked code by setting NX = N.
*
NB = MAX( LWORK / LDWORK, 1 )
NBMIN = ILAENV( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
IF( NB.LT.NBMIN )
$ NX = N
END IF
ELSE
NX = N
END IF
ELSE
NB = 1
END IF
*
IF( UPPER ) THEN
*
* Reduce the upper triangle of A.
* Columns 1:kk are handled by the unblocked method.
*
KK = N - ( ( N-NX+NB-1 ) / NB )*NB
DO 20 I = N - NB + 1, KK + 1, -NB
*
* Reduce columns i:i+nb-1 to tridiagonal form and form the
* matrix W which is needed to update the unreduced part of
* the matrix
*
CALL DLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
$ LDWORK )
*
* Update the unreduced submatrix A(1:i-1,1:i-1), using an
* update of the form: A := A - V*W' - W*V'
*
CALL DSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
$ LDA, WORK, LDWORK, ONE, A, LDA )
*
* Copy superdiagonal elements back into A, and diagonal
* elements into D
*
DO 10 J = I, I + NB - 1
A( J-1, J ) = E( J-1 )
D( J ) = A( J, J )
10 CONTINUE
20 CONTINUE
*
* Use unblocked code to reduce the last or only block
*
CALL DSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
ELSE
*
* Reduce the lower triangle of A
*
DO 40 I = 1, N - NX, NB
*
* Reduce columns i:i+nb-1 to tridiagonal form and form the
* matrix W which is needed to update the unreduced part of
* the matrix
*
CALL DLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
$ TAU( I ), WORK, LDWORK )
*
* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
* an update of the form: A := A - V*W' - W*V'
*
CALL DSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
$ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
$ A( I+NB, I+NB ), LDA )
*
* Copy subdiagonal elements back into A, and diagonal
* elements into D
*
DO 30 J = I, I + NB - 1
A( J+1, J ) = E( J )
D( J ) = A( J, J )
30 CONTINUE
40 CONTINUE
*
* Use unblocked code to reduce the last or only block
*
CALL DSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
$ TAU( I ), IINFO )
END IF
*
WORK( 1 ) = IWS
RETURN
*
* End of DSYTRD
*
END
SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDW, N, NB
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
* ..
*
* Purpose
* =======
*
* DLATRD reduces NB rows and columns of a real symmetric matrix A to
* symmetric tridiagonal form by an orthogonal similarity
* transformation Q' * A * Q, and returns the matrices V and W which are
* needed to apply the transformation to the unreduced part of A.
*
* If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
* matrix, of which the upper triangle is supplied;
* if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
* matrix, of which the lower triangle is supplied.
*
* This is an auxiliary routine called by DSYTRD.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A.
*
* NB (input) INTEGER
* The number of rows and columns to be reduced.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* n-by-n upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n-by-n lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
* On exit:
* if UPLO = 'U', the last NB columns have been reduced to
* tridiagonal form, with the diagonal elements overwriting
* the diagonal elements of A; the elements above the diagonal
* with the array TAU, represent the orthogonal matrix Q as a
* product of elementary reflectors;
* if UPLO = 'L', the first NB columns have been reduced to
* tridiagonal form, with the diagonal elements overwriting
* the diagonal elements of A; the elements below the diagonal
* with the array TAU, represent the orthogonal matrix Q as a
* product of elementary reflectors.
* See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= (1,N).
*
* E (output) DOUBLE PRECISION array, dimension (N-1)
* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
* elements of the last NB columns of the reduced matrix;
* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
* the first NB columns of the reduced matrix.
*
* TAU (output) DOUBLE PRECISION array, dimension (N-1)
* The scalar factors of the elementary reflectors, stored in
* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
* See Further Details.
*
* W (output) DOUBLE PRECISION array, dimension (LDW,NB)
* The n-by-nb matrix W required to update the unreduced part
* of A.
*
* LDW (input) INTEGER
* The leading dimension of the array W. LDW >= max(1,N).
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(n) H(n-1) . . . H(n-nb+1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
* and tau in TAU(i-1).
*
* If UPLO = 'L', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(1) H(2) . . . H(nb).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
* and tau in TAU(i).
*
* The elements of the vectors v together form the n-by-nb matrix V
* which is needed, with W, to apply the transformation to the unreduced
* part of the matrix, using a symmetric rank-2k update of the form:
* A := A - V*W' - W*V'.
*
* The contents of A on exit are illustrated by the following examples
* with n = 5 and nb = 2:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( a a a v4 v5 ) ( d )
* ( a a v4 v5 ) ( 1 d )
* ( a 1 v5 ) ( v1 1 a )
* ( d 1 ) ( v1 v2 a a )
* ( d ) ( v1 v2 a a a )
*
* where d denotes a diagonal element of the reduced matrix, a denotes
* an element of the original matrix that is unchanged, and vi denotes
* an element of the vector defining H(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IW
DOUBLE PRECISION ALPHA
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL LSAME, DDOT
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Reduce last NB columns of upper triangle
*
DO 10 I = N, N - NB + 1, -1
IW = I - N + NB
IF( I.LT.N ) THEN
*
* Update A(1:i,i)
*
CALL DGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
$ LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
CALL DGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
$ LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
END IF
IF( I.GT.1 ) THEN
*
* Generate elementary reflector H(i) to annihilate
* A(1:i-2,i)
*
CALL DLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
E( I-1 ) = A( I-1, I )
A( I-1, I ) = ONE
*
* Compute W(1:i-1,i)
*
CALL DSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
$ ZERO, W( 1, IW ), 1 )
IF( I.LT.N ) THEN
CALL DGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
$ LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
$ A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
$ W( 1, IW ), 1 )
CALL DGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
$ LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
$ W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
$ W( 1, IW ), 1 )
END IF
CALL DSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1,
$ A( 1, I ), 1 )
CALL DAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
END IF
*
10 CONTINUE
ELSE
*
* Reduce first NB columns of lower triangle
*
DO 20 I = 1, NB
*
* Update A(i:n,i)
*
CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
$ LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
$ LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
IF( I.LT.N ) THEN
*
* Generate elementary reflector H(i) to annihilate
* A(i+2:n,i)
*
CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
$ TAU( I ) )
E( I ) = A( I+1, I )
A( I+1, I ) = ONE
*
* Compute W(i+1:n,i)
*
CALL DSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
$ A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
CALL DGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
$ A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
CALL DGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
$ LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
$ A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
CALL DGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
$ LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
CALL DSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1,
$ A( I+1, I ), 1 )
CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
END IF
*
20 CONTINUE
END IF
*
RETURN
*
* End of DLATRD
*
END
SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * )
* ..
*
* Purpose
* =======
*
* DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
* form T by an orthogonal similarity transformation: Q' * A * Q = T.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* n-by-n upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n-by-n lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
* On exit, if UPLO = 'U', the diagonal and first superdiagonal
* of A are overwritten by the corresponding elements of the
* tridiagonal matrix T, and the elements above the first
* superdiagonal, with the array TAU, represent the orthogonal
* matrix Q as a product of elementary reflectors; if UPLO
* = 'L', the diagonal and first subdiagonal of A are over-
* written by the corresponding elements of the tridiagonal
* matrix T, and the elements below the first subdiagonal, with
* the array TAU, represent the orthogonal matrix Q as a product
* of elementary reflectors. See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* D (output) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of the tridiagonal matrix T:
* D(i) = A(i,i).
*
* E (output) DOUBLE PRECISION array, dimension (N-1)
* The off-diagonal elements of the tridiagonal matrix T:
* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
* TAU (output) DOUBLE PRECISION array, dimension (N-1)
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(n-1) . . . H(2) H(1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
* A(1:i-1,i+1), and tau in TAU(i).
*
* If UPLO = 'L', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(1) H(2) . . . H(n-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
* and tau in TAU(i).
*
* The contents of A on exit are illustrated by the following examples
* with n = 5:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( d e v2 v3 v4 ) ( d )
* ( d e v3 v4 ) ( e d )
* ( d e v4 ) ( v1 e d )
* ( d e ) ( v1 v2 e d )
* ( d ) ( v1 v2 v3 e d )
*
* where d and e denote diagonal and off-diagonal elements of T, and vi
* denotes an element of the vector defining H(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO, HALF
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0,
$ HALF = 1.0D0 / 2.0D0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I
DOUBLE PRECISION ALPHA, TAUI
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL LSAME, DDOT
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYTD2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Reduce the upper triangle of A
*
DO 10 I = N - 1, 1, -1
*
* Generate elementary reflector H(i) = I - tau * v * v'
* to annihilate A(1:i-1,i+1)
*
CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
E( I ) = A( I, I+1 )
*
IF( TAUI.NE.ZERO ) THEN
*
* Apply H(i) from both sides to A(1:i,1:i)
*
A( I, I+1 ) = ONE
*
* Compute x := tau * A * v storing x in TAU(1:i)
*
CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
$ TAU, 1 )
*
* Compute w := x - 1/2 * tau * (x'*v) * v
*
ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
* Apply the transformation as a rank-2 update:
* A := A - v * w' - w * v'
*
CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
$ LDA )
*
A( I, I+1 ) = E( I )
END IF
D( I+1 ) = A( I+1, I+1 )
TAU( I ) = TAUI
10 CONTINUE
D( 1 ) = A( 1, 1 )
ELSE
*
* Reduce the lower triangle of A
*
DO 20 I = 1, N - 1
*
* Generate elementary reflector H(i) = I - tau * v * v'
* to annihilate A(i+2:n,i)
*
CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
$ TAUI )
E( I ) = A( I+1, I )
*
IF( TAUI.NE.ZERO ) THEN
*
* Apply H(i) from both sides to A(i+1:n,i+1:n)
*
A( I+1, I ) = ONE
*
* Compute x := tau * A * v storing y in TAU(i:n-1)
*
CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
$ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
* Compute w := x - 1/2 * tau * (x'*v) * v
*
ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
$ 1 )
CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
* Apply the transformation as a rank-2 update:
* A := A - v * w' - w * v'
*
CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
$ A( I+1, I+1 ), LDA )
*
A( I+1, I ) = E( I )
END IF
D( I ) = A( I, I )
TAU( I ) = TAUI
20 CONTINUE
D( N ) = A( N, N )
END IF
*
RETURN
*
* End of DSYTD2
*
END
|