1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* ZGETC2 computes an LU factorization, using complete pivoting, of the
* n-by-n matrix A. The factorization has the form A = P * L * U * Q,
* where P and Q are permutation matrices, L is lower triangular with
* unit diagonal elements and U is upper triangular.
*
* This is a level 1 BLAS version of the algorithm.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA, N)
* On entry, the n-by-n matrix to be factored.
* On exit, the factors L and U from the factorization
* A = P*L*U*Q; the unit diagonal elements of L are not stored.
* If U(k, k) appears to be less than SMIN, U(k, k) is given the
* value of SMIN, giving a nonsingular perturbed system.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1, N).
*
* IPIV (output) INTEGER array, dimension (N).
* The pivot indices; for 1 <= i <= N, row i of the
* matrix has been interchanged with row IPIV(i).
*
* JPIV (output) INTEGER array, dimension (N).
* The pivot indices; for 1 <= j <= N, column j of the
* matrix has been interchanged with column JPIV(j).
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: if INFO = k, U(k, k) is likely to produce overflow if
* one tries to solve for x in Ax = b. So U is perturbed
* to avoid the overflow.
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IP, IPV, J, JP, JPV
DOUBLE PRECISION BIGNUM, EPS, SMIN, SMLNUM, XMAX
* ..
* .. External Subroutines ..
EXTERNAL ZGERU, ZSWAP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, MAX
* ..
* .. Executable Statements ..
*
* Set constants to control overflow
*
INFO = 0
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Factorize A using complete pivoting.
* Set pivots less than SMIN to SMIN
*
DO 40 I = 1, N - 1
*
* Find max element in matrix A
*
XMAX = ZERO
DO 20 IP = I, N
DO 10 JP = I, N
IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( A( IP, JP ) )
IPV = IP
JPV = JP
END IF
10 CONTINUE
20 CONTINUE
IF( I.EQ.1 )
$ SMIN = MAX( EPS*XMAX, SMLNUM )
*
* Swap rows
*
IF( IPV.NE.I )
$ CALL ZSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
IPIV( I ) = IPV
*
* Swap columns
*
IF( JPV.NE.I )
$ CALL ZSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
JPIV( I ) = JPV
*
* Check for singularity
*
IF( ABS( A( I, I ) ).LT.SMIN ) THEN
INFO = I
A( I, I ) = DCMPLX( SMIN, ZERO )
END IF
DO 30 J = I + 1, N
A( J, I ) = A( J, I ) / A( I, I )
30 CONTINUE
CALL ZGERU( N-I, N-I, -DCMPLX( ONE ), A( I+1, I ), 1,
$ A( I, I+1 ), LDA, A( I+1, I+1 ), LDA )
40 CONTINUE
*
IF( ABS( A( N, N ) ).LT.SMIN ) THEN
INFO = N
A( N, N ) = DCMPLX( SMIN, ZERO )
END IF
RETURN
*
* End of ZGETC2
*
END
|