File: zhseqr.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (474 lines) | stat: -rw-r--r-- 15,902 bytes parent folder | download | duplicates (37)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
      SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
     $                   WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ, JOB
      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHSEQR computes the eigenvalues of a complex upper Hessenberg
*  matrix H, and, optionally, the matrices T and Z from the Schur
*  decomposition H = Z T Z**H, where T is an upper triangular matrix
*  (the Schur form), and Z is the unitary matrix of Schur vectors.
*
*  Optionally Z may be postmultiplied into an input unitary matrix Q,
*  so that this routine can give the Schur factorization of a matrix A
*  which has been reduced to the Hessenberg form H by the unitary
*  matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          = 'E': compute eigenvalues only;
*          = 'S': compute eigenvalues and the Schur form T.
*
*  COMPZ   (input) CHARACTER*1
*          = 'N': no Schur vectors are computed;
*          = 'I': Z is initialized to the unit matrix and the matrix Z
*                 of Schur vectors of H is returned;
*          = 'V': Z must contain an unitary matrix Q on entry, and
*                 the product Q*Z is returned.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that H is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to ZGEBAL, and then passed to CGEHRD
*          when the matrix output by ZGEBAL is reduced to Hessenberg
*          form. Otherwise ILO and IHI should be set to 1 and N
*          respectively.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  H       (input/output) COMPLEX*16 array, dimension (LDH,N)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if JOB = 'S', H contains the upper triangular matrix
*          T from the Schur decomposition (the Schur form). If
*          JOB = 'E', the contents of H are unspecified on exit.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H. LDH >= max(1,N).
*
*  W       (output) COMPLEX*16 array, dimension (N)
*          The computed eigenvalues. If JOB = 'S', the eigenvalues are
*          stored in the same order as on the diagonal of the Schur form
*          returned in H, with W(i) = H(i,i).
*
*  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
*          If COMPZ = 'N': Z is not referenced.
*          If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
*          contains the unitary matrix Z of the Schur vectors of H.
*          If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
*          which is assumed to be equal to the unit matrix except for
*          the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
*          Normally Q is the unitary matrix generated by ZUNGHR after
*          the call to ZGEHRD which formed the Hessenberg matrix H.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.
*          LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,N).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, ZHSEQR failed to compute all the
*                eigenvalues in a total of 30*(IHI-ILO+1) iterations;
*                elements 1:ilo-1 and i+1:n of W contain those
*                eigenvalues which have been successfully computed.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   RZERO, RONE, CONST
      PARAMETER          ( RZERO = 0.0D+0, RONE = 1.0D+0,
     $                   CONST = 1.5D+0 )
      INTEGER            NSMAX, LDS
      PARAMETER          ( NSMAX = 15, LDS = NSMAX )
*     ..
*     .. Local Scalars ..
      LOGICAL            INITZ, LQUERY, WANTT, WANTZ
      INTEGER            I, I1, I2, IERR, II, ITEMP, ITN, ITS, J, K, L,
     $                   MAXB, NH, NR, NS, NV
      DOUBLE PRECISION   OVFL, RTEMP, SMLNUM, TST1, ULP, UNFL
      COMPLEX*16         CDUM, TAU, TEMP
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 1 )
      COMPLEX*16         S( LDS, NSMAX ), V( NSMAX+1 ), VV( NSMAX+1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV, IZAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2, ZLANHS
      EXTERNAL           LSAME, ILAENV, IZAMAX, DLAMCH, DLAPY2, ZLANHS
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLACPY, ZLAHQR,
     $                   ZLARFG, ZLARFX, ZLASET, ZSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTT = LSAME( JOB, 'S' )
      INITZ = LSAME( COMPZ, 'I' )
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
*
      INFO = 0
      WORK( 1 ) = MAX( 1, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHSEQR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Initialize Z, if necessary
*
      IF( INITZ )
     $   CALL ZLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
*     Store the eigenvalues isolated by ZGEBAL.
*
      DO 10 I = 1, ILO - 1
         W( I ) = H( I, I )
   10 CONTINUE
      DO 20 I = IHI + 1, N
         W( I ) = H( I, I )
   20 CONTINUE
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
      IF( ILO.EQ.IHI ) THEN
         W( ILO ) = H( ILO, ILO )
         RETURN
      END IF
*
*     Set rows and columns ILO to IHI to zero below the first
*     subdiagonal.
*
      DO 40 J = ILO, IHI - 2
         DO 30 I = J + 2, N
            H( I, J ) = ZERO
   30    CONTINUE
   40 CONTINUE
      NH = IHI - ILO + 1
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are re-set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      ELSE
         I1 = ILO
         I2 = IHI
      END IF
*
*     Ensure that the subdiagonal elements are real.
*
      DO 50 I = ILO + 1, IHI
         TEMP = H( I, I-1 )
         IF( DIMAG( TEMP ).NE.RZERO ) THEN
            RTEMP = DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) )
            H( I, I-1 ) = RTEMP
            TEMP = TEMP / RTEMP
            IF( I2.GT.I )
     $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
            CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
            IF( I.LT.IHI )
     $         H( I+1, I ) = TEMP*H( I+1, I )
            IF( WANTZ )
     $         CALL ZSCAL( NH, TEMP, Z( ILO, I ), 1 )
         END IF
   50 CONTINUE
*
*     Determine the order of the multi-shift QR algorithm to be used.
*
      NS = ILAENV( 4, 'ZHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      MAXB = ILAENV( 8, 'ZHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      IF( NS.LE.1 .OR. NS.GT.NH .OR. MAXB.GE.NH ) THEN
*
*        Use the standard double-shift algorithm
*
         CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
     $                LDZ, INFO )
         RETURN
      END IF
      MAXB = MAX( 2, MAXB )
      NS = MIN( NS, MAXB, NSMAX )
*
*     Now 1 < NS <= MAXB < NH.
*
*     Set machine-dependent constants for the stopping criterion.
*     If norm(H) <= sqrt(OVFL), overflow should not occur.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = RONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( NH / ULP )
*
*     ITN is the total number of multiple-shift QR iterations allowed.
*
      ITN = 30*NH
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of at most MAXB. Each iteration of the loop
*     works with the active submatrix in rows and columns L to I.
*     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
*     H(L,L-1) is negligible so that the matrix splits.
*
      I = IHI
   60 CONTINUE
      IF( I.LT.ILO )
     $   GO TO 180
*
*     Perform multiple-shift QR iterations on rows and columns ILO to I
*     until a submatrix of order at most MAXB splits off at the bottom
*     because a subdiagonal element has become negligible.
*
      L = ILO
      DO 160 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         DO 70 K = I, L + 1, -1
            TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
            IF( TST1.EQ.RZERO )
     $         TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
            IF( ABS( DBLE( H( K, K-1 ) ) ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 80
   70    CONTINUE
   80    CONTINUE
         L = K
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible.
*
            H( L, L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order <= MAXB has split off.
*
         IF( L.GE.I-MAXB+1 )
     $      GO TO 170
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
         IF( ITS.EQ.20 .OR. ITS.EQ.30 ) THEN
*
*           Exceptional shifts.
*
            DO 90 II = I - NS + 1, I
               W( II ) = CONST*( ABS( DBLE( H( II, II-1 ) ) )+
     $                   ABS( DBLE( H( II, II ) ) ) )
   90       CONTINUE
         ELSE
*
*           Use eigenvalues of trailing submatrix of order NS as shifts.
*
            CALL ZLACPY( 'Full', NS, NS, H( I-NS+1, I-NS+1 ), LDH, S,
     $                   LDS )
            CALL ZLAHQR( .FALSE., .FALSE., NS, 1, NS, S, LDS,
     $                   W( I-NS+1 ), 1, NS, Z, LDZ, IERR )
            IF( IERR.GT.0 ) THEN
*
*              If ZLAHQR failed to compute all NS eigenvalues, use the
*              unconverged diagonal elements as the remaining shifts.
*
               DO 100 II = 1, IERR
                  W( I-NS+II ) = S( II, II )
  100          CONTINUE
            END IF
         END IF
*
*        Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
*        where G is the Hessenberg submatrix H(L:I,L:I) and w is
*        the vector of shifts (stored in W). The result is
*        stored in the local array V.
*
         V( 1 ) = ONE
         DO 110 II = 2, NS + 1
            V( II ) = ZERO
  110    CONTINUE
         NV = 1
         DO 130 J = I - NS + 1, I
            CALL ZCOPY( NV+1, V, 1, VV, 1 )
            CALL ZGEMV( 'No transpose', NV+1, NV, ONE, H( L, L ), LDH,
     $                  VV, 1, -W( J ), V, 1 )
            NV = NV + 1
*
*           Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
*           reset it to the unit vector.
*
            ITEMP = IZAMAX( NV, V, 1 )
            RTEMP = CABS1( V( ITEMP ) )
            IF( RTEMP.EQ.RZERO ) THEN
               V( 1 ) = ONE
               DO 120 II = 2, NV
                  V( II ) = ZERO
  120          CONTINUE
            ELSE
               RTEMP = MAX( RTEMP, SMLNUM )
               CALL ZDSCAL( NV, RONE / RTEMP, V, 1 )
            END IF
  130    CONTINUE
*
*        Multiple-shift QR step
*
         DO 150 K = L, I - 1
*
*           The first iteration of this loop determines a reflection G
*           from the vector V and applies it from left and right to H,
*           thus creating a nonzero bulge below the subdiagonal.
*
*           Each subsequent iteration determines a reflection G to
*           restore the Hessenberg form in the (K-1)th column, and thus
*           chases the bulge one step toward the bottom of the active
*           submatrix. NR is the order of G.
*
            NR = MIN( NS+1, I-K+1 )
            IF( K.GT.L )
     $         CALL ZCOPY( NR, H( K, K-1 ), 1, V, 1 )
            CALL ZLARFG( NR, V( 1 ), V( 2 ), 1, TAU )
            IF( K.GT.L ) THEN
               H( K, K-1 ) = V( 1 )
               DO 140 II = K + 1, I
                  H( II, K-1 ) = ZERO
  140          CONTINUE
            END IF
            V( 1 ) = ONE
*
*           Apply G' from the left to transform the rows of the matrix
*           in columns K to I2.
*
            CALL ZLARFX( 'Left', NR, I2-K+1, V, DCONJG( TAU ),
     $                   H( K, K ), LDH, WORK )
*
*           Apply G from the right to transform the columns of the
*           matrix in rows I1 to min(K+NR,I).
*
            CALL ZLARFX( 'Right', MIN( K+NR, I )-I1+1, NR, V, TAU,
     $                   H( I1, K ), LDH, WORK )
*
            IF( WANTZ ) THEN
*
*              Accumulate transformations in the matrix Z
*
               CALL ZLARFX( 'Right', NH, NR, V, TAU, Z( ILO, K ), LDZ,
     $                      WORK )
            END IF
  150    CONTINUE
*
*        Ensure that H(I,I-1) is real.
*
         TEMP = H( I, I-1 )
         IF( DIMAG( TEMP ).NE.RZERO ) THEN
            RTEMP = DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) )
            H( I, I-1 ) = RTEMP
            TEMP = TEMP / RTEMP
            IF( I2.GT.I )
     $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
            CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
            IF( WANTZ ) THEN
               CALL ZSCAL( NH, TEMP, Z( ILO, I ), 1 )
            END IF
         END IF
*
  160 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  170 CONTINUE
*
*     A submatrix of order <= MAXB in rows and columns L to I has split
*     off. Use the double-shift QR algorithm to handle it.
*
      CALL ZLAHQR( WANTT, WANTZ, N, L, I, H, LDH, W, ILO, IHI, Z, LDZ,
     $             INFO )
      IF( INFO.GT.0 )
     $   RETURN
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with a new value of I.
*
      ITN = ITN - ITS
      I = L - 1
      GO TO 60
*
  180 CONTINUE
      WORK( 1 ) = MAX( 1, N )
      RETURN
*
*     End of ZHSEQR
*
      END