File: zlahqr.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (384 lines) | stat: -rw-r--r-- 12,403 bytes parent folder | download | duplicates (37)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
     $                   IHIZ, Z, LDZ, INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      LOGICAL            WANTT, WANTZ
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZLAHQR is an auxiliary routine called by ZHSEQR to update the
*  eigenvalues and Schur decomposition already computed by ZHSEQR, by
*  dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
*
*  Arguments
*  =========
*
*  WANTT   (input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*  WANTZ   (input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that H is already upper triangular in rows and
*          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
*          ZLAHQR works primarily with the Hessenberg submatrix in rows
*          and columns ILO to IHI, but applies transformations to all of
*          H if WANTT is .TRUE..
*          1 <= ILO <= max(1,IHI); IHI <= N.
*
*  H       (input/output) COMPLEX*16 array, dimension (LDH,N)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if WANTT is .TRUE., H is upper triangular in rows
*          and columns ILO:IHI, with any 2-by-2 diagonal blocks in
*          standard form. If WANTT is .FALSE., the contents of H are
*          unspecified on exit.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H. LDH >= max(1,N).
*
*  W       (output) COMPLEX*16 array, dimension (N)
*          The computed eigenvalues ILO to IHI are stored in the
*          corresponding elements of W. If WANTT is .TRUE., the
*          eigenvalues are stored in the same order as on the diagonal
*          of the Schur form returned in H, with W(i) = H(i,i).
*
*  ILOZ    (input) INTEGER
*  IHIZ    (input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE..
*          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
*  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
*          If WANTZ is .TRUE., on entry Z must contain the current
*          matrix Z of transformations accumulated by ZHSEQR, and on
*          exit Z has been updated; transformations are applied only to
*          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
*          If WANTZ is .FALSE., Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z. LDZ >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          > 0: if INFO = i, ZLAHQR failed to compute all the
*               eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
*               iterations; elements i+1:ihi of W contain those
*               eigenvalues which have been successfully computed.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   RZERO, HALF
      PARAMETER          ( RZERO = 0.0D+0, HALF = 0.5D+0 )
      DOUBLE PRECISION   DAT1
      PARAMETER          ( DAT1 = 0.75D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, ITN, ITS, J, K, L, M, NH, NZ
      DOUBLE PRECISION   H10, H21, RTEMP, S, SMLNUM, T2, TST1, ULP
      COMPLEX*16         CDUM, H11, H11S, H22, SUM, T, T1, TEMP, U, V2,
     $                   X, Y
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 1 )
      COMPLEX*16         V( 2 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANHS
      COMPLEX*16         ZLADIV
      EXTERNAL           DLAMCH, ZLANHS, ZLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZCOPY, ZLARFG, ZSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( ILO.EQ.IHI ) THEN
         W( ILO ) = H( ILO, ILO )
         RETURN
      END IF
*
      NH = IHI - ILO + 1
      NZ = IHIZ - ILOZ + 1
*
*     Set machine-dependent constants for the stopping criterion.
*     If norm(H) <= sqrt(OVFL), overflow should not occur.
*
      ULP = DLAMCH( 'Precision' )
      SMLNUM = DLAMCH( 'Safe minimum' ) / ULP
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
*
*     ITN is the total number of QR iterations allowed.
*
      ITN = 30*NH
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of 1. Each iteration of the loop works
*     with the active submatrix in rows and columns L to I.
*     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
*     H(L,L-1) is negligible so that the matrix splits.
*
      I = IHI
   10 CONTINUE
      IF( I.LT.ILO )
     $   GO TO 130
*
*     Perform QR iterations on rows and columns ILO to I until a
*     submatrix of order 1 splits off at the bottom because a
*     subdiagonal element has become negligible.
*
      L = ILO
      DO 110 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         DO 20 K = I, L + 1, -1
            TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
            IF( TST1.EQ.RZERO )
     $         TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
            IF( ABS( DBLE( H( K, K-1 ) ) ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 30
   20    CONTINUE
   30    CONTINUE
         L = K
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible
*
            H( L, L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order 1 has split off.
*
         IF( L.GE.I )
     $      GO TO 120
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
         IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
*
*           Exceptional shift.
*
            S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
            T = S + H( I, I )
         ELSE
*
*           Wilkinson's shift.
*
            T = H( I, I )
            U = H( I-1, I )*DBLE( H( I, I-1 ) )
            IF( U.NE.ZERO ) THEN
               X = HALF*( H( I-1, I-1 )-T )
               Y = SQRT( X*X+U )
               IF( DBLE( X )*DBLE( Y )+DIMAG( X )*DIMAG( Y ).LT.RZERO )
     $            Y = -Y
               T = T - ZLADIV( U, ( X+Y ) )
            END IF
         END IF
*
*        Look for two consecutive small subdiagonal elements.
*
         DO 40 M = I - 1, L + 1, -1
*
*           Determine the effect of starting the single-shift QR
*           iteration at row M, and see if this would make H(M,M-1)
*           negligible.
*
            H11 = H( M, M )
            H22 = H( M+1, M+1 )
            H11S = H11 - T
            H21 = H( M+1, M )
            S = CABS1( H11S ) + ABS( H21 )
            H11S = H11S / S
            H21 = H21 / S
            V( 1 ) = H11S
            V( 2 ) = H21
            H10 = H( M, M-1 )
            TST1 = CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) )
            IF( ABS( H10*H21 ).LE.ULP*TST1 )
     $         GO TO 50
   40    CONTINUE
         H11 = H( L, L )
         H22 = H( L+1, L+1 )
         H11S = H11 - T
         H21 = H( L+1, L )
         S = CABS1( H11S ) + ABS( H21 )
         H11S = H11S / S
         H21 = H21 / S
         V( 1 ) = H11S
         V( 2 ) = H21
   50    CONTINUE
*
*        Single-shift QR step
*
         DO 100 K = M, I - 1
*
*           The first iteration of this loop determines a reflection G
*           from the vector V and applies it from left and right to H,
*           thus creating a nonzero bulge below the subdiagonal.
*
*           Each subsequent iteration determines a reflection G to
*           restore the Hessenberg form in the (K-1)th column, and thus
*           chases the bulge one step toward the bottom of the active
*           submatrix.
*
*           V(2) is always real before the call to ZLARFG, and hence
*           after the call T2 ( = T1*V(2) ) is also real.
*
            IF( K.GT.M )
     $         CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
            CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
            IF( K.GT.M ) THEN
               H( K, K-1 ) = V( 1 )
               H( K+1, K-1 ) = ZERO
            END IF
            V2 = V( 2 )
            T2 = DBLE( T1*V2 )
*
*           Apply G from the left to transform the rows of the matrix
*           in columns K to I2.
*
            DO 60 J = K, I2
               SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
               H( K, J ) = H( K, J ) - SUM
               H( K+1, J ) = H( K+1, J ) - SUM*V2
   60       CONTINUE
*
*           Apply G from the right to transform the columns of the
*           matrix in rows I1 to min(K+2,I).
*
            DO 70 J = I1, MIN( K+2, I )
               SUM = T1*H( J, K ) + T2*H( J, K+1 )
               H( J, K ) = H( J, K ) - SUM
               H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
   70       CONTINUE
*
            IF( WANTZ ) THEN
*
*              Accumulate transformations in the matrix Z
*
               DO 80 J = ILOZ, IHIZ
                  SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
                  Z( J, K ) = Z( J, K ) - SUM
                  Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
   80          CONTINUE
            END IF
*
            IF( K.EQ.M .AND. M.GT.L ) THEN
*
*              If the QR step was started at row M > L because two
*              consecutive small subdiagonals were found, then extra
*              scaling must be performed to ensure that H(M,M-1) remains
*              real.
*
               TEMP = ONE - T1
               TEMP = TEMP / ABS( TEMP )
               H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
               IF( M+2.LE.I )
     $            H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
               DO 90 J = M, I
                  IF( J.NE.M+1 ) THEN
                     IF( I2.GT.J )
     $                  CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
                     CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
                     IF( WANTZ ) THEN
                        CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
     $                              1 )
                     END IF
                  END IF
   90          CONTINUE
            END IF
  100    CONTINUE
*
*        Ensure that H(I,I-1) is real.
*
         TEMP = H( I, I-1 )
         IF( DIMAG( TEMP ).NE.RZERO ) THEN
            RTEMP = ABS( TEMP )
            H( I, I-1 ) = RTEMP
            TEMP = TEMP / RTEMP
            IF( I2.GT.I )
     $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
            CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
            IF( WANTZ ) THEN
               CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
            END IF
         END IF
*
  110 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  120 CONTINUE
*
*     H(I,I-1) is negligible: one eigenvalue has converged.
*
      W( I ) = H( I, I )
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with new value of I.
*
      ITN = ITN - ITS
      I = L - 1
      GO TO 10
*
  130 CONTINUE
      RETURN
*
*     End of ZLAHQR
*
      END