1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
$ JPIV )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER IJOB, LDZ, N
DOUBLE PRECISION RDSCAL, RDSUM
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
COMPLEX*16 RHS( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* ZLATDF computes the contribution to the reciprocal Dif-estimate
* by solving for x in Z * x = b, where b is chosen such that the norm
* of x is as large as possible. It is assumed that LU decomposition
* of Z has been computed by ZGETC2. On entry RHS = f holds the
* contribution from earlier solved sub-systems, and on return RHS = x.
*
* The factorization of Z returned by ZGETC2 has the form
* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
* triangular with unit diagonal elements and U is upper triangular.
*
* Arguments
* =========
*
* IJOB (input) INTEGER
* IJOB = 2: First compute an approximative null-vector e
* of Z using ZGECON, e is normalized and solve for
* Zx = +-e - f with the sign giving the greater value of
* 2-norm(x). About 5 times as expensive as Default.
* IJOB .ne. 2: Local look ahead strategy where
* all entries of the r.h.s. b is choosen as either +1 or
* -1. Default.
*
* N (input) INTEGER
* The number of columns of the matrix Z.
*
* Z (input) DOUBLE PRECISION array, dimension (LDZ, N)
* On entry, the LU part of the factorization of the n-by-n
* matrix Z computed by ZGETC2: Z = P * L * U * Q
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDA >= max(1, N).
*
* RHS (input/output) DOUBLE PRECISION array, dimension (N).
* On entry, RHS contains contributions from other subsystems.
* On exit, RHS contains the solution of the subsystem with
* entries according to the value of IJOB (see above).
*
* RDSUM (input/output) DOUBLE PRECISION
* On entry, the sum of squares of computed contributions to
* the Dif-estimate under computation by ZTGSYL, where the
* scaling factor RDSCAL (see below) has been factored out.
* On exit, the corresponding sum of squares updated with the
* contributions from the current sub-system.
* If TRANS = 'T' RDSUM is not touched.
* NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
*
* RDSCAL (input/output) DOUBLE PRECISION
* On entry, scaling factor used to prevent overflow in RDSUM.
* On exit, RDSCAL is updated w.r.t. the current contributions
* in RDSUM.
* If TRANS = 'T', RDSCAL is not touched.
* NOTE: RDSCAL only makes sense when ZTGSY2 is called by
* ZTGSYL.
*
* IPIV (input) INTEGER array, dimension (N).
* The pivot indices; for 1 <= i <= N, row i of the
* matrix has been interchanged with row IPIV(i).
*
* JPIV (input) INTEGER array, dimension (N).
* The pivot indices; for 1 <= j <= N, column j of the
* matrix has been interchanged with column JPIV(j).
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* This routine is a further developed implementation of algorithm
* BSOLVE in [1] using complete pivoting in the LU factorization.
*
* [1] Bo Kagstrom and Lars Westin,
* Generalized Schur Methods with Condition Estimators for
* Solving the Generalized Sylvester Equation, IEEE Transactions
* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
*
* [2] Peter Poromaa,
* On Efficient and Robust Estimators for the Separation
* between two Regular Matrix Pairs with Applications in
* Condition Estimation. Report UMINF-95.05, Department of
* Computing Science, Umea University, S-901 87 Umea, Sweden,
* 1995.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXDIM
PARAMETER ( MAXDIM = 2 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J, K
DOUBLE PRECISION RTEMP, SCALE, SMINU, SPLUS
COMPLEX*16 BM, BP, PMONE, TEMP
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( MAXDIM )
COMPLEX*16 WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
$ ZSCAL
* ..
* .. External Functions ..
DOUBLE PRECISION DZASUM
COMPLEX*16 ZDOTC
EXTERNAL DZASUM, ZDOTC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, SQRT
* ..
* .. Executable Statements ..
*
IF( IJOB.NE.2 ) THEN
*
* Apply permutations IPIV to RHS
*
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
*
* Solve for L-part choosing RHS either to +1 or -1.
*
PMONE = -CONE
DO 10 J = 1, N - 1
BP = RHS( J ) + CONE
BM = RHS( J ) - CONE
SPLUS = ONE
*
* Lockahead for L- part RHS(1:N-1) = +-1
* SPLUS and SMIN computed more efficiently than in BSOLVE[1].
*
SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
$ J ), 1 ) )
SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
SPLUS = SPLUS*DBLE( RHS( J ) )
IF( SPLUS.GT.SMINU ) THEN
RHS( J ) = BP
ELSE IF( SMINU.GT.SPLUS ) THEN
RHS( J ) = BM
ELSE
*
* In this case the updating sums are equal and we can
* choose RHS(J) +1 or -1. The first time this happens we
* choose -1, thereafter +1. This is a simple way to get
* good estimates of matrices like Byers well-known example
* (see [1]). (Not done in BSOLVE.)
*
RHS( J ) = RHS( J ) + PMONE
PMONE = CONE
END IF
*
* Compute the remaining r.h.s.
*
TEMP = -RHS( J )
CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
10 CONTINUE
*
* Solve for U- part, lockahead for RHS(N) = +-1. This is not done
* In BSOLVE and will hopefully give us a better estimate because
* any ill-conditioning of the original matrix is transfered to U
* and not to L. U(N, N) is an approximation to sigma_min(LU).
*
CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
WORK( N ) = RHS( N ) + CONE
RHS( N ) = RHS( N ) - CONE
SPLUS = ZERO
SMINU = ZERO
DO 30 I = N, 1, -1
TEMP = CONE / Z( I, I )
WORK( I ) = WORK( I )*TEMP
RHS( I ) = RHS( I )*TEMP
DO 20 K = I + 1, N
WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
20 CONTINUE
SPLUS = SPLUS + ABS( WORK( I ) )
SMINU = SMINU + ABS( RHS( I ) )
30 CONTINUE
IF( SPLUS.GT.SMINU )
$ CALL ZCOPY( N, WORK, 1, RHS, 1 )
*
* Apply the permutations JPIV to the computed solution (RHS)
*
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
*
* Compute the sum of squares
*
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
RETURN
END IF
*
* ENTRY IJOB = 2
*
* Compute approximate nullvector XM of Z
*
CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
*
* Compute RHS
*
CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
CALL ZSCAL( N, TEMP, XM, 1 )
CALL ZCOPY( N, XM, 1, XP, 1 )
CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
$ CALL ZCOPY( N, XP, 1, RHS, 1 )
*
* Compute the sum of squares
*
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
RETURN
*
* End of ZLATDF
*
END
|