1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
$ LDC, SCALE, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* ZTRSYL solves the complex Sylvester matrix equation:
*
* op(A)*X + X*op(B) = scale*C or
* op(A)*X - X*op(B) = scale*C,
*
* where op(A) = A or A**H, and A and B are both upper triangular. A is
* M-by-M and B is N-by-N; the right hand side C and the solution X are
* M-by-N; and scale is an output scale factor, set <= 1 to avoid
* overflow in X.
*
* Arguments
* =========
*
* TRANA (input) CHARACTER*1
* Specifies the option op(A):
* = 'N': op(A) = A (No transpose)
* = 'C': op(A) = A**H (Conjugate transpose)
*
* TRANB (input) CHARACTER*1
* Specifies the option op(B):
* = 'N': op(B) = B (No transpose)
* = 'C': op(B) = B**H (Conjugate transpose)
*
* ISGN (input) INTEGER
* Specifies the sign in the equation:
* = +1: solve op(A)*X + X*op(B) = scale*C
* = -1: solve op(A)*X - X*op(B) = scale*C
*
* M (input) INTEGER
* The order of the matrix A, and the number of rows in the
* matrices X and C. M >= 0.
*
* N (input) INTEGER
* The order of the matrix B, and the number of columns in the
* matrices X and C. N >= 0.
*
* A (input) COMPLEX*16 array, dimension (LDA,M)
* The upper triangular matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input) COMPLEX*16 array, dimension (LDB,N)
* The upper triangular matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* C (input/output) COMPLEX*16 array, dimension (LDC,N)
* On entry, the M-by-N right hand side matrix C.
* On exit, C is overwritten by the solution matrix X.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M)
*
* SCALE (output) DOUBLE PRECISION
* The scale factor, scale, set <= 1 to avoid overflow in X.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* = 1: A and B have common or very close eigenvalues; perturbed
* values were used to solve the equation (but the matrices
* A and B are unchanged).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRNA, NOTRNB
INTEGER J, K, L
DOUBLE PRECISION BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
$ SMLNUM
COMPLEX*16 A11, SUML, SUMR, VEC, X11
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
EXTERNAL LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and Test input parameters
*
NOTRNA = LSAME( TRANA, 'N' )
NOTRNB = LSAME( TRANB, 'N' )
*
INFO = 0
IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND. .NOT.
$ LSAME( TRANA, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'T' ) .AND. .NOT.
$ LSAME( TRANB, 'C' ) ) THEN
INFO = -2
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTRSYL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Set constants to control overflow
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM*DBLE( M*N ) / EPS
BIGNUM = ONE / SMLNUM
SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ),
$ EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) )
SCALE = ONE
SGN = ISGN
*
IF( NOTRNA .AND. NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-left corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* M L-1
* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
* I=K+1 J=1
*
DO 30 L = 1, N
DO 20 K = M, 1, -1
*
SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
$ C( MIN( K+1, M ), L ), 1 )
SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
VEC = C( K, L ) - ( SUML+SGN*SUMR )
*
SCALOC = ONE
A11 = A( K, K ) + SGN*B( L, L )
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
IF( SCALOC.NE.ONE ) THEN
DO 10 J = 1, N
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
10 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K, L ) = X11
*
20 CONTINUE
30 CONTINUE
*
ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
*
* Solve A' *X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* upper-left corner column by column by
*
* A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* K-1 L-1
* R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
* I=1 J=1
*
DO 60 L = 1, N
DO 50 K = 1, M
*
SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
VEC = C( K, L ) - ( SUML+SGN*SUMR )
*
SCALOC = ONE
A11 = DCONJG( A( K, K ) ) + SGN*B( L, L )
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
*
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
IF( SCALOC.NE.ONE ) THEN
DO 40 J = 1, N
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
40 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K, L ) = X11
*
50 CONTINUE
60 CONTINUE
*
ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A'*X + ISGN*X*B' = C.
*
* The (K,L)th block of X is determined starting from
* upper-right corner column by column by
*
* A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
*
* Where
* K-1
* R(K,L) = SUM [A'(I,K)*X(I,L)] +
* I=1
* N
* ISGN*SUM [X(K,J)*B'(L,J)].
* J=L+1
*
DO 90 L = N, 1, -1
DO 80 K = 1, M
*
SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
$ B( L, MIN( L+1, N ) ), LDB )
VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
*
SCALOC = ONE
A11 = DCONJG( A( K, K )+SGN*B( L, L ) )
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
*
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
IF( SCALOC.NE.ONE ) THEN
DO 70 J = 1, N
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
70 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K, L ) = X11
*
80 CONTINUE
90 CONTINUE
*
ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B' = C.
*
* The (K,L)th block of X is determined starting from
* bottom-left corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
*
* Where
* M N
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)]
* I=K+1 J=L+1
*
DO 120 L = N, 1, -1
DO 110 K = M, 1, -1
*
SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
$ C( MIN( K+1, M ), L ), 1 )
SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
$ B( L, MIN( L+1, N ) ), LDB )
VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
*
SCALOC = ONE
A11 = A( K, K ) + SGN*DCONJG( B( L, L ) )
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
*
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
IF( SCALOC.NE.ONE ) THEN
DO 100 J = 1, N
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
100 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K, L ) = X11
*
110 CONTINUE
120 CONTINUE
*
END IF
*
RETURN
*
* End of ZTRSYL
*
END
|