1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
|
c algorithm 582, collected algorithms from acm.
c algorithm appeared in acm-trans. math. software, vol.8, no. 2,
c jun., 1982, p. 190.
c ==============================================================
subroutine gpskca (n, degree, rstart, connec, optpro, wrklen,
1 permut, work, bandwd, profil, error, space)
integer n, rstart(n), wrklen, bandwd, profil, error, space
integer degree(n),connec(1),permut(n),work(wrklen),optpro
c ------------------------------------------------------------------
c input parameters:
c n -- the dimension of the matrix
c degree,rstart,connec --
c describe the structure of the sparsematrix. degree(i)
c specifies the number of non-zero off-diagonal entries in the
c i-th row of the sparse matrix. the column indices of these
c entries are given in consecutive locations in connec, starting at
c location rstart(i).in other words, the indices of the non-zero
c off-diagonal elements of the i-th row are found
c in:
c connec (rstart(i)),
c connec (rstart(i) + 1),
c . . .
c connec (rstart(i) + degree(i) - 1)
c
c dimensions:
c rstart is dimension n (or longer).
c degree is dimension n (or longer).
c connec is dimension roughly the number of non-
c zero entries in the matrix.
c
c optpro -- 1 if reducing the profile of the matrix
c is more important than reducing the bandwidth
c 0 if bandwidth reduction is most important
c
c wrklen -- if not enough space is given in work the error flag
c will be set and further computation stopped.
c
c input and output parameter:
c permut -- on input, an alternative reordering for the
c rows and columns of the matrix. permut(i) gives
c the position in which row and column i should
c be placed to reduce the bandwidth or the profile.
c if the user has no alternative to the natural
c ordering implicit in degree, rstart and connec,
c he should initialize permut to be the identity
c permutation permut(i) = i .
c
c on output, permut will contain the permutation
c for reordering the rows and columns which reduces
c the bandwidth and/or profile. the result will be
c the reordering found by 'gpskca' or the reordering
c given by the user in 'permut', whichever does the
c job better.
c
c
c output parameters:
c work -- a temporary storage vector, of 6n+3 locations.
c the 1st n locations of original row and column indices
c locations n+1, ... , 2n new positions
c found by gpskca.
c bandwd -- the bandwidth of the reordered matrix
c profil -- the profile of the reordered matrix
c error -- will be equal to zero if a new numbering could be
c found in the space provided. otherwise, error
c will be set to a positive error code (see table
c given below). if the reordering algorithm has been
c stopped by lack of workspace, the space parameter
c will be set to the number of additional locations
c required to complete at least the next phase of
c the algorithm.
c space -- will indicate either how much space the reordering
c actually required or how much space will be
c required to complete the next phase of the
c reordering algorithm. the possible outcomes are ..
c error = 0 space is the minimal value for
c wrklen required to reorder
c this matrix again.
c error <> 0 space is the minimum number
c due to lack of of extra workspace required
c workspace to continue the reordering
c algorithm on this matrix.
c error <> 0 space = -1
c due to error
c in data structures
c ==================================================================
c e r r o r c o d e s
c error codes have the form 0xy or 1xy.
c errors of the form 1xy result from inadequate workspace.
c errors of the form 0xy are internal program checks
c the last digit (y) is mainly useful for debugging the
c the reordering algorithm. the middle digit (x) indicates
c how much of the algorithm has been performed.
c the table below gives the correspondence between the
c values of x and the structure of the algorithm.
c x = 0 initial processing
c x = 1 computing pseudo-diameter (algorithm i)
c x = 2 transition between algorithm i and ii
c x = 3 combining level structures (algorithm ii)
c x = 4 transition between algorithm ii and iii
c x = 5 bandwidth numbering (algorithm iiia)
c x = 6 profile numbering (algorithm iiib)
c x = 7 final bandwidth/profile computation
integer i, inc1, inc2, avail, nxtnum, lowdg, stnode, nleft,
1 tree1, tree2, depth, empty, stotal, reqd, cspace,
2 lvllst, lvlptr, active, rvnode, width1, width2, mxdg
logical revrs1, oneis1
c
c << number any degree zero nodes >>
c
c while << some nodes yet unnumbered >> do
c << find a pseudo-diameter of the matrix graph >>
c << convert form of level trees >>
c << combine level trees into one level structure >>
c << convert form of level structure >>
c if optpro=1 then
c << renumber by king algorithm >>
c else
c << renumber by reverse cuthill-mckee algorithm >>
c ==================================================================
c ... initialize counters, then number any nodes of degree 0.
c the list of nodes, by new number, will be built in place at
c the front of the work area.
nxtnum = 1
error = 0
space = 2*n
c
mxdg = 0
do 300 i = 1, n
if (degree(i)) 6000, 100, 200
100 work(nxtnum) = i
nxtnum = nxtnum + 1
go to 300
200 if (degree(i) .gt. mxdg) mxdg = degree(i)
300 continue
c ... while nxtnum <= n do ...
1000 if ( nxtnum .gt. n ) go to 2000
c ... find an unnumbered node of minimal degree
lowdg = mxdg + 1
stnode = 0
do 400 i = 1, n
if ( (degree(i) .le. 0) .or. (degree(i) .ge. lowdg) )
1 go to 400
lowdg = degree(i)
stnode = i
400 continue
c
if ( stnode .eq. 0 ) go to 6100
c set up pointers for three lists in work area, then look
c for pseudo-diameter, beginning with stnode.
avail = (wrklen - nxtnum + 1) / 3
nleft = n - nxtnum + 1
space = max0 (space, nxtnum + 3*n - 1)
if ( avail .lt. n ) go to 5200
c
call gpskcb (n, degree, rstart, connec, avail, nleft,
1 stnode, rvnode, work(nxtnum), tree1, tree2,
2 active, depth, width1, width2,
3 error, space)
if ( error .ne. 0 ) go to 5000
space = max0 (space, nxtnum + 3*(active+depth+1) - 1)
c dynamic space check for most of remainder of algorithm
reqd = max0 (nxtnum + 2*n + 3*depth - 1, 3*n + 2*depth + 1)
space = max0 (space, reqd)
if ( wrklen .lt. reqd ) go to 5300
c output from gpskcb is a pair of level trees, in the form of lists of
c nodes by level. convert this to two lists of of level number by node.
c at the same time pack storage so that one of the level tree vectors is
c at the back end of the work area.
lvlptr = nxtnum + avail - depth
call gpskce (n, avail, active, depth, wrklen, work(nxtnum),
1 work(lvlptr), work(1), nxtnum, tree1,
2 tree2, width1, width2, oneis1, error, space)
if ( error .ne. 0 ) go to 5000
if (( tree1 .ne. wrklen - n + 1 ) .or. (tree2 .ne. nxtnum))
1 go to 6200
c combine the two level trees into a more general level structure.
avail = wrklen - nxtnum + 1 - 2*n - 3*depth
stotal = n + nxtnum
empty = stotal + depth
inc1 = tree1 - depth
inc2 = inc1 - depth
c
call gpskcg (n, degree, rstart, connec, active, width1,
1 width2, work(tree1), work(tree2), work(empty),
2 avail, depth, work(inc1), work(inc2),
3 work(stotal), oneis1, revrs1, error, cspace)
c
if ( error .ne. 0 ) go to 5000
space = max0 (space, nxtnum + cspace - 1)
c combined level structure is represented by gpskcg as a vector of level
c numbers. for renumbering phase, convert this also to the inverse permutation.
lvlptr = tree1 - (depth + 1)
lvllst = lvlptr - active
if ( stotal + depth .gt. lvlptr ) go to 6300
c
call gpskci (n, active, depth, work(tree1), work(lvllst),
1 work(lvlptr), work(stotal), error, space)
if (error .ne. 0) go to 5000
c now renumber all members of this component using either a reverse
c cuthill-mckee or a king strategy,
c as profile or bandwidth reduction is more important.
if ( optpro.eq.1 ) go to 500
call gpskcj (n, degree, rstart, connec, active,
1 work(nxtnum), stnode, rvnode, revrs1, depth,
2 work(lvllst), work(lvlptr), work(tree1),
3 error, space)
if ( error .ne. 0 ) go to 5000
nxtnum = nxtnum + active
go to 600
c
500 call gpskck (n, degree, rstart, connec, lvllst-1, nxtnum,
1 work, active, depth, work(lvllst),
2 work(lvlptr), work(tree1), error, space)
if ( error .ne. 0 ) go to 5000
c =========================================================
c ... end of while loop ... repeat if graph is disconnected
c =========================================================
600 go to 1000
c check whether initial numbering or final numbering provides better results
2000 if (wrklen .lt. 2*n) go to 5400
c
if (optpro.eq.1) go to 2100
call gpskcl (n, degree, rstart, connec, work(1), work(n+1),
1 permut, bandwd, profil, error, space)
go to 2200
c
2100 call gpskcm (n, degree, rstart, connec, work(1), work(n+1),
1 permut, bandwd, profil, error, space)
c
2200 return
c . . . e r r o r d i a g n o s t i c s
c error detected by lower level routine. make sure that signs
c of degree are properly set
5000 do 5100 i = 1, n
if (degree(i) .lt. 0) degree(i) = -degree(i)
5100 continue
c
bandwd = -1
profil = -1
return
c storage allocation errors detected in this routine
5200 error = 101
space = -1
go to 5000
5300 error = 102
space = -1
go to 5000
5400 error = 10
space = 2*n - wrklen
go to 5000
c data structure errors detected in this routine
6000 error = 1
go to 6900
6100 error = 2
go to 6900
6200 error = 3
go to 6900
6300 error = 4
6900 space = -1
go to 5000
end
c *****************************************************************************
subroutine gpskcb (n, degree, rstart, connec, avail, nleft,
1 stnode, rvnode, work, forwd, bestbk, nnodes,
2 depth, fwidth, bwidth, error, space)
c find a pseudo-diameter of the matrix graph ...
c << build a level tree from stnode >>
c repeat
c << build a level tree from each node 'bknode' in the
c deepest level of stnode's tree >>
c << replace 'stnode' with 'bknode' if a deeper and
c narrower tree was found. >>
c until
c << no further improvement made >>
c
c ... heuristic above differs from the algorithm published in
c siam j. numerical analysis, but matches the code
c distributed by toms.
c parameters :
c n, degree, rstart & connec describe the matrix structure
c work -- working space, of length 3*avail, used to store
c three level trees.
c stnode is initially the number of a node to be used to start the
c process, to be the root of the first tree. on output, stnode is
c the end of the pseudo-diameter whose level tree is narrowest.
c rvnode will be the other end of the pseudo-diameter.
c nnodes will be the number of nodes in this connected componnent
c of the matrix graph, i.e., the length of the level trees.
c depth -- the depth of the level trees being returned,
c i.e., the length of the pseudo-diameter.
c ==================================================================
c structure of workspace ...
c ---------------------------------------------------------------
c : numbered : tlist1 ptr1 : tlist2 ptr2 : tlist3 ptr3 :
c ---------------------------------------------------------------
c tlisti is a list of nodes of length 'active'
c ptri is a list of pointers into tlisti, of length 'depth+1'
integer n,rstart(n),avail,nleft,stnode,rvnode,forwd,bestbk,
1 nnodes,depth,fwidth,bwidth,error,space
integer degree(n), connec(1), work(avail,3),backwd
integer mxdpth,width,fdepth,lstlvl,nlast,t,i,bknode,lstlvi
logical improv
c build initial level tree from 'stnode'. find out how many
c nodes lie in the current connected component.
forwd = 1
backwd = 2
bestbk = 3
c
call gpskcc (n, degree, rstart, connec, stnode, avail, nleft,
1 work(1,forwd), nnodes, depth, width, error,
2 space)
if ( error .ne. 0 ) go to 5000
c
mxdpth = avail - nnodes - 1
c repeat until no deeper trees are found ...
1000 fwidth = width
fdepth = depth
lstlvl = avail - depth + 1
nlast = work (lstlvl-1, forwd) - work (lstlvl, forwd)
lstlvl = work (lstlvl, forwd)
bwidth = n+1
c sort the deepest level of 'forwd' tree into increasing order of node degree.
call gpskcq (nlast, work(lstlvl,forwd), n, degree, error)
if (error .ne. 0) go to 6000
c build level tree from nodes in 'lstlvl' until a deeper
c and narrower tree is found or the list is exhausted.
improv = .false.
do 1200 i = 1, nlast
lstlvi = lstlvl + i - 1
bknode = work (lstlvi, forwd)
call gpskcd (n, degree, rstart, connec, bknode, avail,
1 nnodes, mxdpth, work(1,backwd), depth, width,
2 bwidth, error, space)
if ( error .ne. 0 ) go to 5000
c
if ( depth .le. fdepth ) go to 1100
c new deeper tree ... make it new 'forwd' tree and break out of 'do' loop.
improv = .true.
t = forwd
forwd = backwd
backwd = t
stnode = bknode
go to 1300
c else check for narrower tree.
1100 if ( width .ge. bwidth ) go to 1200
t = bestbk
bestbk = backwd
backwd = t
bwidth = width
rvnode = bknode
1200 continue
c end of repeat loop
1300 if ( improv ) go to 1000
c
depth = fdepth
return
c in case of error, simply return error flag to user.
5000 return
c
6000 error = 11
space = -1
return
c
end
c***************************************************************************
subroutine gpskcc(n,degree,rstart,connec,stnode,avail,
1 nleft, list, active, depth, width, error,space)
c build the level tree rooted at 'stnode' in the space provided in
c list. check for overrun of space allocation.
integer n, rstart(n), stnode, avail, nleft,
1 active, depth, width, error, space
integer degree(n), connec(1), list(avail)
c input ...
c n, degree, rstart, connec -- describe the matrix structure
c stnode -- the root of the level tree.
c avail -- the length of the working space available
c nleft -- the number of nodes yet to be numbered
c list -- the working space.
c output ...
c active -- the number of nodes in the component
c depth -- the depth of the level tree rooted at stnode.
c width -- the width of the level tree rooted at stnode.
c error -- zero unless storage was insufficient.
integer lstart,nlevel,front,j,newnod,ptr,cdgree,lfront,listj
c build the level tree using list as a queue and leaving the nodes in place.
c this generates the nodes ordered by level put pointers to the beginning
c of each level, building from the back of the work area.
active = 1
depth = 0
width = 0
error = 0
lstart = 1
front = 1
list (active) = stnode
degree (stnode) = -degree (stnode)
list (avail) = 1
nlevel = avail
c ... repeat until queue becomes empty or we run out of space.
1000 if ( front .lt. lstart ) go to 1100
c ... first node of level. update pointers.
lstart = active + 1
width = max0 (width, lstart - list(nlevel))
nlevel = nlevel - 1
depth = depth + 1
if ( nlevel .le. active ) go to 5000
list (nlevel) = lstart
c ... find all neighbors of current node, add them to queue.
1100 lfront = list (front)
ptr = rstart (lfront)
cdgree = -degree (lfront)
if (cdgree .le. 0) go to 6000
do 1200 j = 1, cdgree
newnod = connec (ptr)
ptr = ptr + 1
c ... add to queue only nodes not already in queue
if ( degree(newnod) .le. 0 ) go to 1200
degree (newnod) = -degree (newnod)
active = active + 1
if ( nlevel .le. active ) go to 5000
if ( active .gt. nleft ) go to 6000
list (active) = newnod
1200 continue
front = front + 1
c ... is queue empty?
if ( front .le. active ) go to 1000
c ... yes, the tree is built. undo our markings.
do 1300 j = 1, active
listj = list(j)
degree (listj) = -degree (listj)
1300 continue
c
return
c ... insufficient storage ...
5000 space = 3 * ( (nleft+1-active)*depth / nleft + (nleft+1-active) )
error = 110
return
c
6000 error = 12
space = -1
return
c
end
c**************************************************************************
subroutine gpskcd(n,degree,rstart,connec,stnode,avail,
1 active, mxdpth, list, depth, width, maxwid,error, space)
c build the level tree rooted at 'stnode' in the space provided in
c list. overflow check needed only on depth of tree.
c
c build the level tree to completion only if the width of all
c levels is smaller than 'maxwid'. if a wider level is found
c terminate the construction.
integer n, rstart(n), stnode, avail, active, mxdpth,
1 depth, width, maxwid, error, space
integer degree(n), connec(1), list(avail)
c input ...
c n, degree, rstart, connec -- describe the matrix structure
c stnode -- the root of the level tree.
c avail -- the length of the working space available
c nleft -- the number of nodes yet to be numbered
c active -- the number of nodes in the component
c mxdpth -- maximum depth of level tree possible in
c allotted working space
c list -- the working space.
c output ...
c depth -- the depth of the level tree rooted at stnode.
c width -- the width of the level tree rooted at stnode.
c maxwid -- limit on width of the tree. tree will not be
c used if width of any level is as great as
c maxwid, so construction of tree need not
c continue if any level that wide is found.
c error -- zero unless storage was insufficient.
integer lstart, nlevel, front, j, newnod, ptr, back,
1 sptr, fptr, lfront, listj
c
c ... build the level tree using list as a queue and leaving
c the nodes in place. this generates the nodes ordered by level
c put pointers to the beginning of each level, building from
c the back of the work area.
c
back = 1
depth = 0
width = 0
error = 0
lstart = 1
front = 1
list (back) = stnode
degree (stnode) = -degree (stnode)
list (avail) = 1
nlevel = avail
c ... repeat until queue becomes empty or we run out of space.
c ------------------------------------------------------------
1000 if ( front .lt. lstart ) go to 1100
c ... first node of level. update pointers.
lstart = back + 1
width = max0 (width, lstart - list(nlevel))
if ( width .ge. maxwid ) go to 2000
nlevel = nlevel - 1
depth = depth + 1
if ( depth .gt. mxdpth ) go to 5000
list (nlevel) = lstart
c ... find all neighbors of current node, add them to queue.
1100 lfront = list (front)
sptr = rstart (lfront)
fptr = sptr - degree (lfront) - 1
do 1200 ptr = sptr, fptr
newnod = connec (ptr)
c ... add to queue only nodes not already in queue
if ( degree(newnod) .le. 0 ) go to 1200
degree (newnod) = -degree (newnod)
back = back + 1
list (back) = newnod
1200 continue
front = front + 1
c ... is queue empty?
if ( front .le. back ) go to 1000
c ... yes, the tree is built. undo our markings.
if (back .ne. active) go to 6000
c
1300 do 1400 j = 1, back
listj = list(j)
degree (listj) = -degree (listj)
1400 continue
return
c ... abort generation of tree because it is already too wide
2000 width = n + 1
depth = 0
go to 1300
c ... insufficient storage ...
5000 space = 3 * ( (active+1-back)*depth / active + (active+1-back) )
error = 111
return
6000 error = 13
space = -1
return
end
c*************************************************************************
subroutine gpskce(n,avail,active,depth,wrklen,lvllst,lvlptr,
1 work,nxtnum,tree1,tree2,width1,width2,oneis1,error,space)
c
c transition between algorithm i and algorithm ii of
c the gibbs-poole-stockmeyer paper.
c
c in this implementation algorithm i represents level trees as
c lists of nodes ordered by level. algorithm ii appears to require
c level numbers indexed by node -- vectors for efficiency.
c this subroutine changes the level tree representation to that
c required by algorithm ii. note that the first algorithm can be
c carried out with the level number vector format, probably requring
c more computation time, but perhaps less storage.
c
c input: two level trees, as level lists and level pointers,
c found in two of the three columns of the arrays 'lvllst'
c and 'lvlptr'
c
c output: two level trees, as vectors of level numbers,
c one packed to the front, one to the rear of the working
c area 'work'. note that 'work', 'lvllst' and 'lvlptr'
c share common locations.
c ================================================================
c ... structure of workspace
c input .. (output from gpskcb)
c --------------------------------------------------------------
c : numbered : tlist1 ptr1 : tlist2 ptr2 : tlist3 ptr3 :
c --------------------------------------------------------------
c output .. (goes to combin)
c --------------------------------------------------------------
c : numbered : tree2 : ... : tree1 :
c --------------------------------------------------------------
integer n, avail, active, depth, wrklen, nxtnum,
1 width1, width2, tree1, tree2, error, space
integer lvllst(avail,3), lvlptr(avail,3), work(wrklen)
logical oneis1
integer i, btree, ftree, fwidth, bwidth
c ... check that we have enough room to do the necessary unpacking
if (3*avail .gt. wrklen) go to 6000
if (avail .lt. n) go to 5100
c
c ... input has three possible cases:
c lvllst(*,1) is empty
c lvllst(*,2) is empty
c lvllst(*,3) is empty
ftree = tree1
btree = tree2
fwidth = width1
bwidth = width2
c
tree1 = wrklen - n + 1
tree2 = nxtnum
c
if ( (ftree .eq. 1) .or. (btree .eq. 1) ) go to 300
c ... case 1: 1st slot is empty. unpack 3 into 1, 2 into 3
if (ftree .ne. 2) go to 100
oneis1 = .true.
width2 = bwidth
width1 = fwidth
go to 200
c
100 oneis1 = .false.
width1 = bwidth
width2 = fwidth
c
200 call gpskcf (n, active, depth, lvllst(1,3), lvlptr(1,3),
1 work(tree2), oneis1)
c
call gpskcf (n, active, depth, lvllst(1,2), lvlptr(1,2),
1 work(tree1), .not. oneis1)
c
go to 1000
c
c
300 if ( (ftree .eq. 2) .or. (btree .eq. 2) ) go to 600
c ... case 2: 2nd slot is empty. to enable complete
c repacking, move 3 into 2, then fall into next case
do 400 i = 1, active
lvllst(i,2) = lvllst(i,3)
400 continue
c
do 500 i = 0, depth
lvlptr(i,2) = lvlptr(i,3)
500 continue
c ... case 3: slot 3 is empty. move 1 into 3, then 2 into 1.
600 if (ftree .eq. 1) go to 700
oneis1 = .false.
width1 = bwidth
width2 = fwidth
go to 800
c
700 oneis1 = .true.
width1 = fwidth
width2 = bwidth
c
800 call gpskcf (n, active, depth, lvllst(1,1), lvlptr(1,1),
1 work(tree1), .not. oneis1)
c
call gpskcf (n, active, depth, lvllst(1,2), lvlptr(1,2),
1 work(tree2), oneis1)
1000 return
c
c ------------------------------------------------------------------
c
5100 space = 3 * (n - avail)
error = 120
return
c
6000 error = 20
space = -1
return
c
end
c**************************************************************************
subroutine gpskcf(n,active,depth,lvllst,lvlptr,lvlnum,revers)
c convert level structure representation from a list of nodes
c grouped by level to a vector giving level number for each node.
c lvllst, lvlptr -- list of lists
c lvlnum -- output vector of level numbers
c revers -- if .true., number level structure from back end
c instead of from front
integer n,active,depth,lvllst(active),lvlptr(depth),lvlnum(n)
logical revers
integer i, level, lstart, lend, xlevel, plstrt, lvllsi
if (active .eq. n) go to 200
c if not all nodes of graph are active, mask out the nodes which are not active
do 100 i = 1, n
lvlnum(i) = 0
100 continue
c
200 do 400 level = 1, depth
xlevel = level
plstrt = depth - level + 1
if (revers) xlevel = plstrt
lstart = lvlptr (plstrt)
lend = lvlptr (plstrt - 1) - 1
c
do 300 i = lstart, lend
lvllsi = lvllst(i)
lvlnum (lvllsi) = xlevel
300 continue
400 continue
return
end
c***************************************************************************
subroutine gpskcg(n,degree,rstart,connec,active,width1,width2,
1 tree1,tree2,work,wrklen,depth,inc1,inc2,total,oneis1,revrs1,
2 error,space)
c combine the two rooted level trees into a single level structure
c which may have smaller width than either of the trees. the new
c structure is not necessarily a rooted structure.
c parameters:
c n, degree, rstart, connec -- give the dimension and structure
c of the sparse symmetric matrix
c active -- the number of nodes in this connected component of
c the matrix graph
c tree1 -- on input, one of the input level trees. on
c output, the combined level structure
c tree2 -- the second input level tree
c width1 -- the maximum width of a level in tree1
c width2 -- the maximum width of a level in tree2
c work -- a working area of length 'wrklen'
c inc1, -- vectors of length 'depth'
c inc2,total,oneis1
c -- indicates whether tree1 or tree2 represents the
c forward tree or the backwards tree of phase 1.
c used to mimic arbitrary tie-breaking procedure of
c original gibbs-poole-stockmeyer code.
c
c revrs1 -- output parameter indicating whether a backwards
c ordering was used for the largest component of
c the reduced graph
c error -- non-zero only if failure of space allocation or
c data structure error found
c space -- minimum space required to rerun or complete phase.
integer n,rstart(n),active,width1,width2,wrklen,depth,error,space
integer degree(n), connec(1), tree1(n), tree2(n),
1 work(wrklen), inc1(depth), inc2(depth), total(depth)
logical oneis1, revrs1
c << remove all nodes of pseudo-diameters >>
c << find connected components of reduced graph >>
c << combine level trees, component by component >>
c structure of workspace ...
c ------------------------------------------------------------------
c : numbered : tree2 : total : nodes : start : size : inc1 : inc2 :
c ------------------------------------------------------------------
c --------
c tree1 :
c --------
c numbered is the set of numbered nodes (probably empty)
c tree1 and tree1 are level trees (length n)
c total, inc1 and inc2 are vectors of node counts per level
c (length 'depth')
c nodes is the set of nodes in the reduced graph (the nodes
c not on any shortest path from one end of the
c pseudodiameter to the other)
c start, zsize are pointers into 'nodes', one of each for
c each connected component of the reduced graph.
c the sizes of nodes, start and size are not known apriori.
c
c ==================================================================
integer i, zsize, avail, cstop, start, compon, tree1i, pcstrt,
1 cstart, mxinc1, mxinc2, compns, mxcomp, offdia,
2 csize, pcsize, worki, tworki
c find all shortest paths from start to finish. remove nodes onthese
c paths and in other connected components of full graph from further
c consideration. sign of entries in tree1 is used as a mask.
offdia = active
c
do 100 i = 1, depth
total(i) = 0
100 continue
c
do 200 i = 1, n
tree1i = tree1 (i)
if ((tree1(i).ne.tree2(i)) .or. (tree1(i).eq.0)) go to 200
total (tree1i) = total (tree1i) + 1
tree1(i) = - tree1(i)
offdia = offdia - 1
200 continue
c
if ( offdia .eq. 0 ) go to 1100
if ( offdia .lt. 0 ) go to 6000
c find connected components of graph induced by the nodes not removed.
c 'mxcomp' is the largest number of components representable in
c the working space available.
avail = wrklen - offdia
mxcomp = avail/2
start = offdia + 1
zsize = start + mxcomp
c
if (mxcomp .le. 0) go to 5100
c
call gpskch (n, degree, rstart, connec, tree1, offdia, work,
1 mxcomp, work(start), work(zsize), compns, error,
2 space)
if ( error .ne. 0 ) go to 5000
c record space actually used (not including numbered )
space = 2*n + 3*(depth) + 2*compns + offdia
c sort the component start pointers into increasing order of size of component
if (compns .gt. 1)
1 call gpskcn (compns, work(zsize), work(start), error)
if (error .ne. 0) go to 6200
c for each component in turn, choose to use the ordering of the 'forward'
c tree1 or of the 'backward' tree2 to number the nodes in this component.
c the numbering is chosen to minimize the maximum increment to any level.
do 1000 compon = 1, compns
pcstrt = start + compon - 1
cstart = work (pcstrt)
pcsize = zsize + compon - 1
csize = work (pcsize)
cstop = cstart + csize - 1
if ((csize .lt. 0) .or. (csize .gt. offdia)) go to 6100
c
do 300 i = 1, depth
inc1(i) = 0
inc2(i) = 0
300 continue
c
mxinc1 = 0
mxinc2 = 0
c
do 400 i = cstart, cstop
worki = work(i)
tworki = -tree1 (worki)
inc1 (tworki) = inc1 (tworki) + 1
tworki = tree2 (worki)
inc2 (tworki) = inc2 (tworki) + 1
400 continue
c ... baroque tests below duplicate the gibbs-poole-stockmeyer-
c crane program, *** not *** the published algorithm.
do 500 i = 1, depth
if ((inc1(i) .eq. 0) .and. (inc2(i) .eq. 0)) go to 500
if (mxinc1 .lt. total(i) + inc1(i))
1 mxinc1 = total(i) + inc1(i)
if (mxinc2 .lt. total(i) + inc2(i))
1 mxinc2 = total(i) + inc2(i)
500 continue
c ... use ordering of narrower tree unless it increases
c width more than wider tree. in case of tie, use tree 2!
if ( (mxinc1 .gt. mxinc2) .or.
1 ( (mxinc1 .eq. mxinc2) .and. ( (width1 .gt. width2) .or.
2 ( (width1 .eq. width2)
3 .and. oneis1) ) ) )
4 go to 700
c
if ( compon .eq. 1 ) revrs1 = .not. oneis1
c
do 600 i = 1, depth
total(i) = total(i) + inc1(i)
600 continue
go to 1000
c
700 if ( compon .eq. 1 ) revrs1 = oneis1
do 800 i = cstart, cstop
worki = work(i)
tree1 (worki) = - tree2 (worki)
800 continue
c
do 900 i = 1, depth
total(i) = total(i) + inc2(i)
900 continue
c
1000 continue
go to 2000
c ... default when the reduced graph is empty
1100 revrs1 = .true.
space = 2*n
2000 return
c error found ...
5000 space = -1
go to 2000
5100 space = 2 - avail
error = 131
go to 2000
6000 error = 30
go to 5000
6100 error = 31
go to 5000
6200 error = 32
go to 5000
end
c**************************************************************************
subroutine gpskch(n,degree,rstart,connec,status,nreduc,
1 work, mxcomp, start, zsize, compns, error, space)
c find the connected components of the graph induced by the set
c of nodes with positive 'status'. we shall build the list of
c connected components in 'work', with a list of pointers
c to the beginning nodes of components located in 'start'
integer n, rstart(n), nreduc, mxcomp, compns, error, space
integer degree(n), connec(1), status(n), work(nreduc),
1 start(mxcomp), zsize(mxcomp)
c parameters ...
c n -- dimension of the original matrix
c degree, rstart, connec -- the structure of the original matrix
c status -- derived from a level tree. positive entries indicate
c active nodes. nodes with status <= 0 are ignored.
c nreduc -- the number of active nodes
c work -- work space, used as a queue to build connected
c components in place.
c mxcomp -- maximum number of components allowed by current
c space allocation. must not be violated.
c start -- pointer to beginning of i-th connected component
c zsize -- size of each component
c compns -- number of components actually found
c error -- should be zero on return unless we have too little
c space or we encounter an error in the data structure
c space -- maximum amount of workspace used / needed
integer i, j, free, jptr, node, jnode, front, cdgree, root
c repeat
c << find an unassigned node and start a new component >>
c repeat
c << add all new neighbors of front node to queue, >>
c << remove front node. >>
c until <<queue empty>>
c until << all nodes assigned >>
free = 1
compns = 0
root = 1
c ... start of outer repeat loop
c ... find an unassigned node
100 do 200 i = root, n
if (status(i) .le. 0) go to 200
node = i
go to 300
200 continue
go to 6100
c ... start new component
300 compns = compns + 1
root = node + 1
if (compns .gt. mxcomp) go to 5000
start (compns) = free
work (free) = node
status (node) = -status (node)
front = free
free = free + 1
c ... inner repeat until queue becomes empty
400 node = work (front)
front = front + 1
c
jptr = rstart (node)
cdgree = degree (node)
do 500 j = 1, cdgree
jnode = connec (jptr)
jptr = jptr + 1
if (status(jnode) .lt. 0) go to 500
if (status(jnode) .eq. 0) go to 6000
status (jnode) = -status (jnode)
work (free) = jnode
free = free + 1
500 continue
c
if (front .lt. free) go to 400
c ... end of inner repeat. compute size of component and
c see if there are more nodes to be assigned
zsize (compns) = free - start (compns)
if (free .le. nreduc) go to 100
c
if (free .ne. nreduc+1) go to 6200
return
5000 space = nreduc - free + 1
error = 130
return
6000 error = 33
space = -1
return
6100 error = 34
space = -1
return
6200 error = 35
space = -1
return
end
c**************************************************************************
subroutine gpskci(n,active,depth,lstruc,lvllst,lvlptr,
1 ltotal, error, space)
c transitional subroutine, algorithm ii to iiia or iiib.
c convert level structure given as vector of level numbers for nodes
c to structure as list of nodes by level
c n, active, depth -- problem sizes
c lstruc -- input level structure
c lvllst, lvlptr -- output level structure
c ltotal -- number of nodes at each level (precomputed)
integer n, active, depth, error, space
integer lstruc(n), lvllst(active), lvlptr(1), ltotal(depth)
c structure of workspace ..
c input (from combin) ..
c ------------------------------------------------------------------
c : numbered : ..(n).. : total : ... : tree :
c ------------------------------------------------------------------
c
c output (to gpskcj or gpskck) ..
c
c ------------------------------------------------------------------
c : numbered : ... : tlist : tptr : tree :
c ------------------------------------------------------------------
c
c here, numbered is the set of nodes in numbered components
c total is a vector of length 'depth' giving the number
c of nodes in each level of the 'tree'.
c tlist, tptr are lists of nodes of the tree, arranged
c by level. tlist is of length 'active', tptr 'depth+1'.
integer i, acount, start, level, plevel
c ... establish starting and ending pointers for each level
start = 1
do 100 i = 1, depth
lvlptr(i) = start
start = start + ltotal(i)
ltotal(i) = start
100 continue
lvlptr(depth+1) = start
c
acount = 0
do 300 i = 1, n
if (lstruc(i)) 200, 300, 6000
200 level = -lstruc(i)
lstruc(i) = level
plevel = lvlptr (level)
lvllst (plevel) = i
lvlptr (level) = lvlptr (level) + 1
acount = acount + 1
if (lvlptr (level) .gt. ltotal (level)) go to 6100
300 continue
c ... reset starting pointers
lvlptr(1) = 1
do 400 i = 1, depth
lvlptr(i+1) = ltotal(i)
400 continue
return
6000 error = 40
go to 6200
6100 error = 41
6200 space = -1
return
end
c************************************************************************
subroutine gpskcj(n,degree,rstart,connec,ncompn,invnum,snode1,
1 snode2, revrs1,depth, lvllst, lvlptr, lvlnum, error,space)
c number the nodes in a generalized level structure according
c to a generalization of the cuthill mckee strategy.
c
c n -- dimension of original problem
c degree, rstart, connec -- give structure of sparse and
c symmetric matrix
c ncompn -- number of nodes in this component of matrix graph
c invnum -- will become a list of the original nodes in the order
c which reduces the bandwidth of the matrix.
c nxtnum -- the next index to be assigned (1 for first component)
c revrs1 -- if .true., first component of reduced graph was numbered
c backwards.
c lvllst -- list of nodes in level tree ordered by level.
c lvlptr -- position of initial node in each level of lvllst.
c lvlnum -- level number of each node in component
integer n, rstart(n), ncompn, snode1, snode2, depth,
1 error, space
integer degree(n), connec(1), invnum(ncompn),
1 lvllst(ncompn), lvlptr(depth), lvlnum(n)
logical revrs1
c numbering requires two queues, which can be build in place in invnum.
c ==================================================================
c a l g o r i t h m s t r u c t u r e
c ==================================================================
c << set queue1 to be the set containing only the start node. >>
c
c for level = 1 to depth do
c begin
c loop
c repeat
c begin
c << cnode <- front of queue1 >>
c << add unnumbered neighbors of cnode to the back >>
c << of queue1 or queue2 (use queue1 if neighbor >>
c << at same level, queue2 if at next level). sort >>
c << the newly queued nodes into increasing order of >>
c << degree. number cnode, delete it from queue1. >>
c end
c until
c << queue1 is empty >>
c exit if << all nodes at this level numbered >>
c begin
c << find the unnumbered node of minimal degree at this >>
c << level, restart queue1 with this node. >>
c end
c end << loop loop >>
c << promote queue2 to be initial queue1 for next iteration >>
c << of for loop. >>
c end <<for loop>>
c ==================================================================
c structure of workspace ..
c --------------------------------------------------------------
c : numbered : queue1 : queue2 : ... : tlist : tptr : tree :
c --------------------------------------------------------------
c on completion, we have only a new, longer numbered set.
integer i, bq1, bq2, fq1, inc, cptr, cnode,
1 inode, level, nleft, lstart, lwidth, queue1,
2 queue2, cdgree, xlevel, stnode, ilevel, sq1, sq2,
3 nsort, lowdg, bptr, lvllsc, lvllsb, invnmi
c
logical forwrd, rlevel
c ... gibbs-poole-stockmeyer heuristic choice of order
if (degree(snode1) .gt. degree(snode2)) go to 10
forwrd = revrs1
stnode = snode1
go to 20
c
10 forwrd = .not. revrs1
stnode = snode2
c ... set up initial queues at front of 'invnum' for forwrd order,
c at back for reversed order.
20 if (forwrd) go to 100
inc = -1
queue1 = ncompn
go to 200
c
100 inc = +1
queue1 = 1
c
200 invnum (queue1) = stnode
rlevel = (lvlnum(stnode) .eq. depth)
lvlnum (stnode) = 0
fq1 = queue1
bq1 = queue1 + inc
c number nodes level by level ...
do 3000 xlevel = 1, depth
level = xlevel
if (rlevel) level = depth - xlevel + 1
c
lstart = lvlptr (level)
lwidth = lvlptr (level+1) - lstart
nleft = lwidth
queue2 = queue1 + inc*lwidth
bq2 = queue2
c ... 'loop' construct begins at statement 1000
c the inner 'repeat' will be done as many times as
c is necessary to number all the nodes at this level.
1000 continue
c ... repeat ... until queue1 becomes empty
c take node from front of queue1, find each of its neighbors which have
c not yet been numbered, and add the neighbors to queue1 or queue2
c according to their levels.
c
1100 cnode = invnum (fq1)
fq1 = fq1 + inc
sq1 = bq1
sq2 = bq2
nleft = nleft - 1
c
cptr = rstart (cnode)
cdgree = degree (cnode)
do 1300 i = 1, cdgree
inode = connec (cptr)
cptr = cptr + 1
ilevel = lvlnum (inode)
if (ilevel .eq. 0) go to 1300
lvlnum (inode) = 0
if ( ilevel .eq. level ) go to 1200
c
if (iabs(level-ilevel) .ne. 1) go to 6400
invnum (bq2) = inode
bq2 = bq2 + inc
go to 1300
c
1200 invnum (bq1) = inode
bq1 = bq1 + inc
1300 continue
c ... sort the nodes just added to queue1 and queue2
c separately into increasing order of degree.
if (iabs (bq1 - sq1) .le. 1) go to 1500
nsort = iabs (bq1 - sq1)
if (forwrd) go to 1400
call gpskcp (nsort, invnum(bq1+1), n, degree,
1 error)
if (error .ne. 0) go to 6600
go to 1500
c
1400 call gpskcq (nsort, invnum(sq1), n, degree,
1 error)
if (error .ne. 0) go to 6600
c
1500 if (iabs (bq2 - sq2) .le. 1) go to 1700
nsort = iabs (bq2 - sq2)
if (forwrd) go to 1600
call gpskcp (nsort, invnum(bq2+1), n, degree,
1 error)
if (error .ne. 0) go to 6600
go to 1700
c
1600 call gpskcq (nsort, invnum(sq2), n, degree,
1 error)
if (error .ne. 0) go to 6600
c
c ... end of repeat loop
c
1700 if (fq1 .ne. bq1) go to 1100
c ... queue1 is now empty ...
c if there are any unnumbered nodes left at this level,find the one of
c minimal degree and return to the repeat loop above.
2000 if ((bq1 .eq. queue2) .and. (nleft .eq. 0)) go to 2900
c
if ((nleft .le. 0) .or. (nleft .ne. inc * (queue2 - bq1)))
1 go to 6200
c
lowdg = n + 1
bptr = n + 1
cptr = lstart - 1
do 2800 i = 1, nleft
2600 cptr = cptr + 1
lvllsc = lvllst (cptr)
if (lvlnum (lvllsc) .eq. level) go to 2700
if (lvlnum (lvllsc) .ne. 0) go to 6300
go to 2600
c
2700 if (degree(lvllsc) .ge. lowdg) go to 2800
lowdg = degree (lvllsc)
bptr = cptr
c
2800 continue
c ... minimal degree unnumbered node found ...
if (bptr .gt. n) go to 6500
lvllsb = lvllst (bptr)
invnum (bq1) = lvllsb
lvlnum (lvllsb) = 0
bq1 = bq1 + inc
go to 1000
c ... advance queue pointers to make queue2 the
c new queue1 for the next iteration.
2900 queue1 = queue2
fq1 = queue1
bq1 = bq2
if ((bq1 .eq. fq1) .and. (xlevel .lt. depth)) go to 6100
c
3000 continue
c ... change sign of degree to mark these nodes as 'numbered'
do 3100 i = 1, ncompn
invnmi = invnum(i)
degree (invnmi) = -degree (invnmi)
3100 continue
return
6000 space = -1
return
6100 error = 51
go to 6000
6200 error = 52
go to 6000
6300 error = 53
go to 6000
6400 error = 54
go to 6000
6500 error = 55
go to 6000
6600 error = 56
go to 6000
end
c************************************************************************
subroutine gpskck(n,degree,rstart,connec,wrklen,nxtnum,
1 work, ncompn, depth, lvllst, lvlptr, lvlnum, error, space)
c
integer n,rstart(n),wrklen,nxtnum,ncompn,depth,error,space
integer degree(n), connec(1), work(wrklen), lvllst(n),
1 lvlptr(depth), lvlnum(n)
c number nodes in a generalized level structure according to
c a generalization of the king algorithm, which reduces
c the profile of the sparse symmetric matrix.
c ---------------------
c code uses a priority queue to choose the next node to be numbered
c the priority queue is represented by a simple linear-linked list
c to save space. this will require more searching than a fully
c linked representation, but the data manipulation is simpler.
c -------------------
c << establish priority queue 'active' for level 1 nodes >>
c
c for i = 1 to depth do
c << set queue 'queued' to be empty, list 'next' to be >>
c << set of nodes at next level. >>
c
c for j = 1 to 'nodes at this level' do
c << find first node in active with minimal connections >>
c << to 'next'. number this node and remove him from >>
c << 'active'. for each node in 'next' which connected >>
c << to this node, move it to 'queued' and remove it >>
c << from 'next'. >>
c
c << set new queue 'active' to be 'queued' followed by any >>
c << nodes still in 'next'. >>
c
c ==================================================================
c
c data structure assumptions:
c the first 'nxtnum-1' elements of work are already in use.
c the level structure 'lvllst' is contiguous with work, that is,
c it resides in elements wrklen+1, ... of work. 'lvlptr' and
c 'lvlnum' are also embedded in work, behind 'lvllst'. the
c three vectors are passed separately to clarify the indexing,
c but the queues developed will be allowed to overrun 'lvllst'
c as needed.
c
c ... build the first 'active' queue starting w1 locations from
c the front of the current working area (w1 is the width of the
c first level). build the first 'queued' queue starting from
c the back of work space. the list 'next' will be realized
c implicitly in 'lvlnum' as:
c lvlnum(i) > 0 <== level number of node. 'next' is
c set with lvlnum(i) = level+1
c lvlnum(i) = 0 <== i-th node is in 'queued' or is
c not in this component of graph,
c or has just been numbered.
c lvlnum(i) < 0 <== i-th node is in 'active' and is
c connected to -lvlnum(i) nodes in
c 'next'.
c ==================================================================
c structure of workspace ..
c --------------------------------------------------------------
c : numbered : done : active : alevel : ... : queued : lvllst :
c --------------------------------------------------------------
c -------------------
c lvlptr : lvlnum :
c -------------------
c in the above,
c numbered is the set of nodes already numbered from
c previous components and earlier levels of this component.
c done, active, alevel are vectors of length the width of
c the current level. active is a set of indices into
c alevel. as the nodes in alevel are numbered, they
c are placed into 'done'.
c queued is a queue of nodes in the 'next' level, which
c grows from the start of the 'next' level in lvllst
c forwards toward 'alevel'. queued is of length no more
c than the width of the next level.
c lvllst is the list of unnumbered nodes in the tree,
c arranged by level.
c
c ==================================================================
integer i, j, k, ptr, jptr, kptr, lptr, mptr, pptr, rptr,
1 mpptr, jnode, knode, cnode, level, lowdg, unused,
2 mxque, nnext, astart, mindg, lstart, lwidth, active,
2 queueb, queued, qcount, nconnc, nactiv, cdgree,
3 ldgree, nfinal, jdgree, strtic, added, twrkln,
4 lvllsl, connej, conner, astptr, actptr, activi,
5 astrti, queuei, acpptr
c
twrkln = wrklen + ncompn + n + depth + 1
unused = twrkln
c
astart = lvlptr(1)
lwidth = lvlptr(2) - astart
astart = wrklen + 1
active = nxtnum + lwidth + 1
nactiv = lwidth
nfinal = nxtnum + ncompn
c
nnext = lvlptr(3) - lvlptr(2)
queued = wrklen
queueb = queued
mxque = active + lwidth
c ... build first priority queue 'active'
lowdg = - (n + 1)
lptr = lvlptr(1)
do 200 i = 1, lwidth
nconnc = 0
lvllsl= lvllst (lptr)
jptr = rstart (lvllsl)
ldgree = degree(lvllsl)
do 100 j = 1, ldgree
connej = connec (jptr)
if ( lvlnum (connej) .eq. 2 ) nconnc = nconnc - 1
jptr = jptr + 1
100 continue
c
activi = active + i - 1
work (activi) = i
lvlnum (lvllsl) = nconnc
lowdg = max0 (lowdg, nconnc)
lptr = lptr + 1
200 continue
work (active-1) = 0
c now number nodes level by level ...
do 2000 level = 1, depth
c ... number all nodes in this level
do 1100 i = 1, lwidth
pptr = -1
ptr = work (active-1)
if (nnext .eq. 0) go to 1000
c if nodes remain in next, find the earliest node in active of minimal degree.
mindg = -(n+1)
do 400 j = 1, nactiv
astptr = astart + ptr
cnode = work (astptr)
if ( lvlnum (cnode) .eq. lowdg ) go to 500
if ( lvlnum (cnode) .le. mindg ) go to 300
mpptr = pptr
mptr = ptr
mindg = lvlnum (cnode)
300 pptr = ptr
actptr = active + ptr
ptr = work (actptr)
400 continue
c establish ptr as first min degree node pptr as predecessor in list.
ptr = mptr
pptr = mpptr
c
500 astptr = astart + ptr
cnode = work (astptr)
lowdg = lvlnum (cnode)
lvlnum (cnode) = 0
jptr = rstart (cnode)
c update connection counts for all nodes which
c connect to cnode's neighbors in next.
cdgree = degree(cnode)
strtic = queueb
c
do 700 j = 1, cdgree
jnode = connec (jptr)
jptr = jptr + 1
if (lvlnum (jnode) .ne. level+1 ) go to 700
if (queueb .lt. mxque) go to 5000
work (queueb) = jnode
queueb = queueb - 1
nnext = nnext - 1
lvlnum (jnode) = 0
if (nactiv .eq. 1) go to 700
kptr = rstart (jnode)
jdgree = degree (jnode)
do 600 k = 1, jdgree
knode = connec (kptr)
kptr = kptr + 1
if (lvlnum (knode) .ge. 0) go to 600
lvlnum (knode) = lvlnum (knode) + 1
if (lowdg .lt. lvlnum(knode))
1 lowdg = lvlnum(knode)
600 continue
700 continue
c to mimic the algorithm as implemented by gibbs, sort the nodes just
c added to the queue into increasing order of original index. (but, because
c the queue is stored backwards in memory, the sort routine is called
c for decreasing index.)
c
c treat 0, 1 or 2 nodes added as special cases
added = strtic - queueb
if (added - 2) 1000, 800, 900
c
800 if (work(strtic-1) .gt. work(strtic)) go to 1000
jnode = work(strtic)
work(strtic) = work(strtic-1)
work(strtic-1) = jnode
go to 1000
c
900 call gpskco (added, work(queueb+1), error)
if (error .ne. 0) go to 5500
c number this node and delete it from 'active'.
c mark it unavailable by changing sign of degree
1000 nactiv = nactiv - 1
astptr = astart + ptr
cnode = work (astptr)
work (nxtnum) = cnode
degree (cnode) = -degree (cnode)
nxtnum = nxtnum + 1
c ... delete link to this node from list
acpptr = active + pptr
actptr = active + ptr
work (acpptr) = work (actptr)
1100 continue
c ... now move the queue 'queued' forward, at the same
c time computing connection counts for its elements.
c then do the same for the remaining nodes in 'next'.
unused = min0 (unused, queueb - mxque)
if ( nxtnum .ne. active-1 ) go to 5100
if ( level .eq. depth ) go to 2000
lstart = lvlptr (level+1)
lwidth = lvlptr (level+2) - lstart
active = nxtnum + lwidth + 1
astart = active + lwidth
nactiv = lwidth
mxque = astart + lwidth
if ( mxque .gt. queueb + 1 ) go to 5000
unused = min0 (unused, queueb - mxque + 1)
c
qcount = queued - queueb
lowdg = -n-1
work (active-1) = 0
c
ptr = lstart
do 1600 i = 1, lwidth
c ... choose next node from either 'queued' or 'next'
if (i .gt. qcount ) go to 1200
queuei = queued + 1 - i
cnode = work (queuei)
go to 1300
c
1200 cnode = lvllst (ptr)
ptr = ptr + 1
if ( ptr .gt. lvlptr(level+2) ) go to 5200
if (lvlnum (cnode) .gt. 0) go to 1300
go to 1200
c
1300 if ( level+1 .eq. depth ) go to 1500
c
rptr = rstart (cnode)
nconnc = 0
jdgree = degree (cnode)
do 1400 j = 1, jdgree
conner = connec (rptr)
if ( lvlnum (conner) .eq. level+2 )
1 nconnc = nconnc - 1
rptr = rptr + 1
1400 continue
lvlnum (cnode) = nconnc
lowdg = max0 (lowdg, nconnc)
c ... add cnode to new 'active' queue
1500 activi = active + (i - 1)
astrti = astart + (i - 1)
work (activi) = i
work (astrti) = cnode
1600 continue
c
if (depth .eq. level+1 ) go to 1700
nnext = lvlptr (level+3) - lvlptr (level+2)
queued = lstart - 1 + lwidth + wrklen
queueb = queued
go to 2000
c
1700 nnext = 0
c
2000 continue
c
c print *,nxtnum,nfinal
if (nxtnum .ne. nfinal) go to 5300
space = max0 (space, twrkln - unused)
return
5000 space = nactiv + nnext
error = 160
return
5100 error = 61
go to 5400
5200 error = 62
go to 5400
c !!!!!!!
5300 error = 63
5400 return
5500 error = 64
go to 5400
end
c************************************************************************
subroutine gpskcl (n, degree, rstart, connec, invnum, newnum,
1 oldnum, bandwd, profil, error, space)
c
integer n, rstart(n), bandwd, profil, error, space
integer degree(n), connec(1), invnum(n), newnum(n), oldnum(n)
c compute the bandwidth and profile for the renumbering given
c by 'invnum' and also for the renumbering given by 'oldnum'.
c 'newnum' will be a permutation vector copy of the node list 'invnum'.
integer i, j, jptr, idgree, oldbnd, oldpro, newbnd, newpro,
1 oldrwd, newrwd, oldorg, neworg, jnode, invnmi
c ... create newnum as a permutation vector
do 100 i = 1, n
invnmi = invnum (i)
newnum (invnmi) = i
100 continue
c compute profile and bandwidth for both the old and the new orderings.
oldbnd = 0
oldpro = 0
newbnd = 0
newpro = 0
c
do 300 i = 1, n
if (degree(i) .eq. 0) go to 300
if (degree(i) .gt. 0) go to 6000
idgree = -degree(i)
degree(i) = idgree
neworg = newnum(i)
oldorg = oldnum(i)
newrwd = 0
oldrwd = 0
jptr = rstart (i)
c find neighbor which is numbered farthest ahead of the current node.
do 200 j = 1, idgree
jnode = connec(jptr)
jptr = jptr + 1
newrwd = max0 (newrwd, neworg - newnum(jnode))
oldrwd = max0 (oldrwd, oldorg - oldnum(jnode))
200 continue
c
newpro = newpro + newrwd
newbnd = max0 (newbnd, newrwd)
oldpro = oldpro + oldrwd
oldbnd = max0 (oldbnd, oldrwd)
300 continue
c ... if new ordering has better bandwidth than old ordering,
c replace old ordering by new ordering
if (newbnd .gt. oldbnd) go to 500
bandwd = newbnd
profil = newpro
do 400 i = 1, n
oldnum(i) = newnum(i)
400 continue
go to 600
c ... retain old ordering
500 bandwd = oldbnd
profil = oldpro
c
600 return
6000 space = -1
error = 70
return
end
c**************************************************************************
subroutine gpskcm (n, degree, rstart, connec, invnum, newnum,
1 oldnum, bandwd, profil, error, space)
integer n, rstart(n), bandwd, profil, error, space
integer degree(n), connec(n), invnum(n), newnum(n), oldnum(n)
c compute the bandwidth and profile for the renumbering given
c by 'invnum', by the reverse of numbering 'invnum', and also
c by the renumbering given in 'oldnum'.
c 'newnum' will be a permutation vector copy of the node
c list 'invnum'.
integer i, j, jptr, idgree, oldbnd, oldpro, newbnd, newpro,
1 oldrwd, newrwd, oldorg, neworg, jnode, nrvbnd, nrvpro,
2 nrvorg, nrvrwd, invnmi, nmip1
c ... create newnum as a permutation vector
do 100 i = 1, n
invnmi = invnum (i)
newnum (invnmi) = i
100 continue
c compute profile and bandwidth for both the old and the new orderings.
oldbnd = 0
oldpro = 0
newbnd = 0
newpro = 0
nrvbnd = 0
nrvpro = 0
c
do 300 i = 1, n
if (degree(i) .eq. 0) go to 300
if (degree(i) .gt. 0) go to 6000
idgree = -degree(i)
degree(i) = idgree
newrwd = 0
oldrwd = 0
nrvrwd = 0
neworg = newnum(i)
oldorg = oldnum(i)
nrvorg = n - newnum(i) + 1
jptr = rstart (i)
c ... find neighbor which is numbered farthest ahead of the current node.
do 200 j = 1, idgree
jnode = connec(jptr)
jptr = jptr + 1
newrwd = max0 (newrwd, neworg - newnum(jnode))
oldrwd = max0 (oldrwd, oldorg - oldnum(jnode))
nrvrwd = max0 (nrvrwd, nrvorg - n + newnum(jnode) - 1)
200 continue
c
newpro = newpro + newrwd
newbnd = max0 (newbnd, newrwd)
nrvpro = nrvpro + nrvrwd
nrvbnd = max0 (nrvbnd, nrvrwd)
oldpro = oldpro + oldrwd
oldbnd = max0 (oldbnd, oldrwd)
300 continue
c ... if new ordering has better bandwidth than old ordering,
c replace old ordering by new ordering
if ((newpro .gt. oldpro) .or. (newpro .gt. nrvpro)) go to 500
bandwd = newbnd
profil = newpro
do 400 i = 1, n
oldnum(i) = newnum(i)
400 continue
go to 800
c ... check new reversed ordering for best profile
500 if (nrvpro .gt. oldpro) go to 700
bandwd = nrvbnd
profil = nrvpro
do 600 i = 1, n
oldnum(i) = n - newnum(i) + 1
if (i .gt. n/2) go to 600
j = invnum(i)
nmip1 = (n + 1) - i
invnum(i) = invnum (nmip1)
invnum (nmip1) = j
600 continue
go to 800
c ... retain old ordering
700 bandwd = oldbnd
profil = oldpro
c
800 return
6000 error = 71
space = -1
return
end
c***************************************************************************
subroutine gpskcn (n, key, data, error)
c i n s e r t i o n s o r t
c input:
c n -- number of elements to be sorted
c key -- an array of length n containing the values
c which are to be sorted
c data -- a second array of length n containing data
c associated with the individual keys.
c output:
c key -- will be arranged so that values are in decreasing
c order
c data -- rearranged to correspond to rearranged keys
c error -- will be zero unless the program is malfunctioning,
c in which case it will be equal to 1.
integer n,error,key(n),data(n)
integer i, j, d, k, ip1, jm1
c
if (n .eq. 1) return
if (n .le. 0) go to 6000
c
error = 0
c ... insertion sort ... for i := n-1 step -1 to 1 do ...
2400 i = n - 1
ip1 = n
c
2500 if ( key (i) .ge. key (ip1) ) go to 2800
c ... out of order ... move up to correct place
k = key (i)
d = data (i)
j = ip1
jm1 = i
c ... repeat ... until 'correct place for k found'
2600 key (jm1) = key (j)
data (jm1) = data (j)
jm1 = j
j = j + 1
if (j .gt. n) go to 2700
if (key (j) .gt. k) go to 2600
c
2700 key (jm1) = k
data (jm1) = d
c
2800 ip1 = i
i = i - 1
if ( i .gt. 0 ) go to 2500
c
3000 return
c
6000 error = 1
go to 3000
c
end
c**************************************************************************
subroutine gpskco (n, key, error)
c i n s e r t i o n s o r t
c input:
c n -- number of elements to be sorted
c key -- an array of length n containing the values
c which are to be sorted
c output:
c key -- will be arranged so that values are in decreasing
c order
integer n, error,key(n)
integer i, j, k, ip1, jm1
if (n .eq. 1) return
if (n .le. 0) go to 6000
c
error = 0
c
c ... insertion sort ... for i := n-1 step -1 to 1 do ...
c
2400 i = n - 1
ip1 = n
c
2500 if ( key (i) .ge. key (ip1) ) go to 2800
c ... out of order ... move up to correct place
k = key (i)
j = ip1
jm1 = i
c ... repeat ... until 'correct place for k found'
2600 key (jm1) = key (j)
jm1 = j
j = j + 1
if (j .gt. n) go to 2700
if (key (j) .gt. k) go to 2600
c
2700 key (jm1) = k
c
2800 ip1 = i
i = i - 1
if ( i .gt. 0 ) go to 2500
3000 return
6000 error = 1
go to 3000
c
end
c**************************************************************************
subroutine gpskcp (n, index, nvec, degree, error)
c i n s e r t i o n s o r t
c input:
c n -- number of elements to be sorted
c index -- an array of length n containing the indices
c whose degrees are to be sorted
c degree -- an nvec vector, giving the degrees of nodes
c which are to be sorted.
c output:
c index -- will be arranged so that values are in decreasing
c order
c error -- will be zero unless the program is malfunctioning,
c in which case it will be equal to 1.
integer n, nvec, error,index(n), degree(nvec)
integer i, j, v, ip1, jm1, indexi, indxi1, indexj
if (n .eq. 1) return
if (n .le. 0) go to 6000
c
error = 0
c insertion sort the entire file
c ... insertion sort ... for i := n-1 step -1 to 1 do ...
c
2400 i = n - 1
ip1 = n
c
2500 indexi = index (i)
indxi1 = index (ip1)
if ( degree(indexi) .ge. degree(indxi1) ) go to 2800
c ... out of order ... move up to correct place
v = degree (indexi)
j = ip1
jm1 = i
indexj = index (j)
c ... repeat ... until 'correct place for v found'
2600 index (jm1) = indexj
jm1 = j
j = j + 1
if (j .gt. n) go to 2700
indexj = index (j)
if (degree(indexj) .gt. v) go to 2600
c
2700 index (jm1) = indexi
c
2800 ip1 = i
i = i - 1
if ( i .gt. 0 ) go to 2500
c
3000 return
6000 error = 1
go to 3000
end
c************************************************************************
subroutine gpskcq (n, index, nvec, degree, error)
c i n s e r t i o n s o r t
c input:
c n -- number of elements to be sorted
c index -- an array of length n containing the indices
c whose degrees are to be sorted
c degree -- an nvec vector, giving the degrees of nodes
c which are to be sorted.
c output:
c index -- will be arranged so that values are in increasing
c order
c error -- will be zero unless the program is malfunctioning,
c in which case it will be equal to 1.
integer n, nvec, error,index(n), degree(nvec)
integer i, j, v, indexi, indxi1, indexj, ip1, jm1
if (n .eq. 1) return
if (n .le. 0) go to 6000
c
error = 0
c insertion sort the entire file
c ... insertion sort ... for i := n-1 step -1 to 1 do ...
c
2400 i = n - 1
ip1 = n
c
2500 indexi = index (i)
indxi1 = index (ip1)
if ( degree(indexi) .le. degree(indxi1) ) go to 2800
c ... out of order ... move up to correct place
v = degree (indexi)
j = ip1
jm1 = i
indexj = index (j)
c ... repeat ... until 'correct place for v found'
2600 index (jm1) = indexj
jm1 = j
j = j + 1
if (j .gt. n) go to 2700
indexj = index (j)
if (degree(indexj) .lt. v) go to 2600
2700 index (jm1) = indexi
2800 ip1 = i
i = i - 1
if ( i .gt. 0 ) go to 2500
3000 return
6000 error = 1
go to 3000
end
c *************************main main main**************************************
c gpstrf ..
c a subroutine which generates the full structure of the graph of a sparse
c matrix, given the graph of the lower
c triangle stored by columns (or upper triangle stored by rows).
c gpsrpk ..
c a subroutine which repacks the connectivity or graph
c structure to the original lower triangular form
c gpslpk ..
c a subroutine which takes the original data and the output
c reordering from the gibbs-poole-stockmeyer algorithm, and
c produces the required input for the linpack positive
c definite band linear equation solvers. a simple printer
c listing of the output data structures is provided.
c gpsenv ..
c a subroutine which takes the original data, and the output
c reordering from the gibbs-king algorithm, and produces
c a reasonable data structure for a hypothetical envelope
c (variable bandwidth) linear equation solver (e.g., the
c envelope solver in sparspak). a simple routine for
c printing the output data structures is provided.
c
c the code assumes symmetric matrices with the lower triangle stored
c by columns.
subroutine bandred(n,nz,liwork,iwork,lrwork,rwork,optpro,error,
1 iperm,mrepi,iband)
integer n,nz,error,optpro,iperm(n),mrepi(n),iband(n)
integer cstart,connec,invcol,degree,bandwd,
1 profil,permut,gpswrk,ireqd,space,gpserr,mxreqd,gpswln
integer liwork,lrwork,iwork(liwork)
double precision rwork(lrwork)
error=0
do 1,i=1,n
iband(i)=1
mrepi(i)=i
iperm(i)=i
1 continue
10 continue
if (error.ne.0) go to 3000
cstart = 1
permut = cstart + (n + 1)
connec = permut + n
c ... build full adjacency (connectivity) structure required for
c the reordering routines. integer workspace is partitioned as
c column starts ( n+1 ) (lower triangle)
c permutation from gps ( n )
c adjacency structure (2*nz - n) (nz = nonzeroes in lower
c triangle and diagonal)
c node degrees ( n ) (full structure)
c gps workspace ( 6*n + 3)
c
c the 2*nz locations consisting of the adjacency structure
c and the vector of degrees are remapped into two vectors
c of length nz by subroutine gpsrpk, and used in that
c form by the routines which reformat the real data.
degree = connec + (2*nz - n)
gpswrk = degree + n
ireqd = gpswrk + 6*n + 3
if (liwork .lt. ireqd) go to 3100
gpswln = liwork - gpswrk + 1
call gpstrf(n,iwork(cstart),iwork(connec),iwork(gpswrk),
1 iwork(degree), iwork(permut), error)
if (error.ne.0) go to 3000
call gpskca (n, iwork(degree), iwork(cstart), iwork(connec),
1 optpro, gpswln, iwork(permut), iwork(gpswrk),
2 bandwd, profil, gpserr, space)
c
do 21 i=1,n
iperm(i)=iwork(permut+i-1)
mrepi(i)=iwork(gpswrk+i-1)
21 continue
c !!!!!
if (gpserr .ne. 0) go to 3000
invcol = connec + nz
call gpsrpk (n, nz,iwork(cstart),iwork(connec),iwork(invcol),
1 error)
if (error.ne.0) go to 3000
c
if (optpro.eq.1) go to 100
mxreqd = (bandwd + 1) * n
if (mxreqd .gt. lrwork) go to 4000
c
call gpslpk (n,nz,lrwork,bandwd,iwork(cstart),
1 iwork(connec),iwork(permut),iwork(invcol),rwork, error)
iband(1)=bandwd
go to 200
100 call gpsenv (n, nz, profil, lrwork, iwork(connec),
1 iwork(cstart), iwork(invcol), iwork(permut),
2 iwork(gpswrk), rwork, error)
c
do 22 i=1,n
iband(i)=iwork(i)
22 continue
200 if (error.ne.0) go to 3000
300 return
3000 continue
error=64000
c call erro('program terminated by error')
go to 300
3100 call erro('insufficient workspace for integers')
c write (6, 63100) ireqd
go to 300
4000 call erro('reordering completed')
call erro('real workspace insufficient for factorization')
go to 300
63100 format (36h0insufficient workspace for integers /
1 17h0require at least , i8)
end
c************************************************************************
subroutine gpstrf(n,cstart,connec,cstrt2,degree,permut,error)
c transform connectivity data from form as lower triangle by columns
c (upper triangle by rows) to complete connectivity structure.
c
c this subroutine will check the data to ensure that only the
c lower triangle is present. repeated elements are allowed,
c but no attempt will be made to detect them and reduce storage.
integer n,degree(1), connec(1), permut(n)
integer cstart(1), cstrt2(1),error
c ... (actual dimension for cstart and cstrt2 is n+1. actual
c dimension for connec is 2*nz - n)
integer i, j, k, kstart, nk, kstop, rk, rj, istart,
1 jstart, jk
c ... determine strict lower triangle degree of each node
do 100 j = 1, n
degree(j) = cstart(j+1) - cstart(j)
100 continue
c ... determine degree in full adjacency structure
do 400 j = 1, n
kstart = cstart(j)
kstop = cstart(j+1) - 1
if (kstart .gt. kstop) go to 400
do 300 k = kstart, kstop
i = connec(k)
if (i - j) 3100, 300, 200
c i<j i=j i>j
c ... in lower triangle
200 if (i .gt. n) go to 3000
degree(i) = degree(i) + 1
300 continue
400 continue
c ... compute row starts in full adjacency structure
cstrt2(1) = 1
if (n .le. 1) go to 1000
c
do 500 i = 2, n
cstrt2(i) = cstrt2(i-1) + degree(i-1)
500 continue
c ... expand lower adjacency structure into space for full adjacency
c structure. real workspace is left alone.
c loops run backward, from last column to first, and last row
c to first within column, to ensure that no overwriting occurs
c and that the lower triangle is contiguous as the first group
c of entries within a column of the full structure.
do 700 rj = 1, n
j = n - rj + 1
jstart = cstrt2 (j)
kstart = cstart (j)
nk = cstart(j+1) - kstart
if (nk .le. 0) go to 700
c
do 600 rk = 1, nk
k = kstart + (nk - rk)
i = connec(k)
jk = jstart + (nk - rk)
connec(jk) = i
c ... build upper triangle
if (i .eq. j) go to 600
istart = cstrt2(i)
connec (istart) = j
cstrt2 (i) = istart + 1
600 continue
cstrt2 (j) = jstart + nk
700 continue
c ... reset row start pointers for full connectivity structure
c and initialize permutation vector for gps
do 800 j = 1, n
cstart (j) = cstrt2 (j) - degree (j)
permut (j) = j
800 continue
cstart(n+1) = cstart(n) + degree(n)
1000 return
3000 call erro('row index out of range')
c write (6, 63000) i, j
error = 999
go to 1000
3100 call erro('data out of proper triangle')
c write (6, 63100) i, j
error = 999
go to 1000
63000 format (23h0row index out of range /
1 4h i =, i8 / 4h j =, i8)
63100 format (30h0data out of proper triangle /
1 32h0i should be greater than j /
2 4h i =, i8 /
3 4h j =, i8)
c
end
c************************************************************************
subroutine gpsrpk(n,nz,cstart,connec,invcol,error)
c return connectivity information to original format
c to match form of real data for nonzero values.
c this repacking enables us to carry out the physical reordering
c with only a single copy of the connectivity structure.
integer n,nz,invcol(nz),connec(1),cstart(2),error
c ... actual dimensions of cstart and connec are n+1 and 2*nz - n
c respectively. on input, connec contains the connectivity
c structure of both triangles of the matrix, including one
c copy of the diagonal. on output, the first nz locations
c of connec have returned to their original values, giving
c the lower triangle as a list of row indices grouped by
c column. in this package, the vector invcol is allowed
c to overlap the last nz-n locations of connec, and contains
c on output the column indices for the corresponding row
c indices in connec.
integer i, istart, istop, iptr, j
c ... repack to lower triangle form (eliminating upper triangle)
c (row indices stored by columns)
iptr = cstart(1)
do 200 j = 1, n
istart = cstart(j)
istop = cstart(j+1) - 1
cstart(j) = iptr
if (istop .lt. istart) go to 200
do 100 i = istart, istop
if (connec(i) .lt. j) go to 100
connec(iptr) = connec(i)
iptr = iptr + 1
100 continue
200 continue
cstart(n+1) = iptr
c
if (iptr .ne. nz+1) go to 3000
c store column indices in next nz locations in connec to enable us to
c quickly recover the column index in the repacking of the real data.
do 400 j = 1, n
istart = cstart(j)
istop = cstart(j+1) - 1
if (istop .lt. istart) go to 400
do 300 i = istart, istop
invcol(i) = j
300 continue
400 continue
c
1000 return
c
3000 call erro('program check in subroutine gpsrpk')
error = 999
go to 1000
c
end
c************************************************************************
subroutine gpslpk (n,nz,alen,bandwd,cstart,connec,permut,
1 invcol, a, error)
c reorder real data into form for input to linpack positive
c definite symmetric band matrix factorizer and solver
integer n, nz, alen, bandwd,cstart(1)
integer connec(nz), permut(n), invcol(nz),error
double precision a(alen)
c ... actual dimensions required above
c cstart -- n+1
c a -- n * (bandwd + 1)
c
c the vector a represents, in input, the packed nonzeroes
c of the lower triangle of the matrix, stored by columns.
c on output, it is the upper triangle of the matrix, stored
c by columns in the linpack band format, with lda = bandwd+1
integer i, j, k, kstart, kstop, newi, newj, gnewj, bandp1,
1 nzp1, laband, xaddr, nxaddr, nextj, nexti
double precision x, nextx
c ... zero out currently unused part of a
bandp1 = (bandwd + 1)
laband = bandp1 * n
if (laband .gt. alen) go to 3100
c
nzp1 = nz + 1
if (nzp1 .gt. laband) go to 200
do 100 k = nzp1, laband
a(k) = 0.0
100 continue
c move entries from packed data structure in front part of vector a into
c their final locations. if the final location is occupied (a collision),
c recursively, move that entry on to its final location, ...
200 do 800 j = 1, n
kstart = cstart (j)
kstop = cstart (j+1) - 1
gnewj = permut (j)
c move all entries in j-th column statement 300 below is return
c point for an indefinite loop of the form repeat ... until no collisions
if (kstop .lt. kstart) go to 800
do 700 k = kstart, kstop
i = connec(k)
if (i .eq. 0) go to 700
c
newj = gnewj
xaddr = k
x = a(k)
a(k) = 0.0
c
300 newi = permut (i)
connec (xaddr) = 0
if (iabs (newi - newj) .gt. bandwd) go to 3000
c get address of permuted (i,j) - element
if (newj .lt. newi) go to 400
nxaddr = bandp1 * newj + (newi - newj)
go to 500
c
400 nxaddr = bandp1 * newi + (newj - newi)
c ... check for collison
500 if (nxaddr .gt. nz) go to 600
nexti = connec (nxaddr)
if (nexti .eq. 0) go to 600
c collision -- target of current nonzero is still occupied. pick up values in
c target location, store current x, and go back to 300 with the new value for x
nextx = a(nxaddr)
a (nxaddr) = x
x = nextx
c get row and column indices for element with which we collided
i = nexti
nextj = invcol(nxaddr)
newj = permut (nextj)
xaddr = nxaddr
go to 300
c
600 a (nxaddr) = a (nxaddr) + x
c
700 continue
800 continue
1000 return
c ... error handling for data structure destruction
3000 continue
call erro('program failure in subroutine gpslpk')
c write (6, 63000) i, j, newi, newj
error = 999
go to 1000
3100 continue
call erro('program failure in subroutine gpslpk')
c write (6, 63100) alen, laband
error = 999
go to 1000
63000 format (1h0 / 37h0program failure in subroutine gpslpk /
1 17h0i, j, newi, newj, 4i10)
63100 format (1h0 / 37h0program failure in subroutine gpslpk /
1 35h0length supplied for reals is only , i8 /
2 20h0length required is , i8)
c
end
c************************************************************************
subroutine gpsenv (n, nz, profil, alen, connec, cstart, invcol,
1 permut, xenv, a, error)
c produce the lower triangle of the envelope matrix resulting
c from reordering a sparse symmetric matrix with the permutation
c given by gibbs-poole-stockmeyer-king.
c
c the lower triangle of the the original matrix is stored by
c columns, with row indices in 'connec', nonzero values in
c 'a'. on output, the reordered matrix will be stored with the
c diagonal entries in the first n locations of a, and the
c off-diagonal envelope for the lower triangle stored by rows
c in the next alen - n locations of a. the vector cstart
c will be overwritten to contain the initial entry in the
c envelope for each row of a.
c
integer n, nz, profil, alen, cstart(1), xenv(1)
integer connec(nz), invcol(nz), permut(n),error
double precision a(alen)
integer i, j, k, newi, newj, lenv, nextj, nxaddr, xaddr,
1 kstart, kstop, eptr, nzp1, gnewj, nexti
double precision x, nextx
c ... determine envelope structure from permutation
do 100 i = 1, n
xenv(i) = 0
100 continue
c
do 400 i = 1, n
newi = permut (i)
kstart = cstart (i)
kstop = cstart (i+1) - 1
if (kstop .lt. kstart) go to 400
do 300 k = kstart, kstop
j = connec(k)
newj = permut (j)
if (newi .gt. newj) go to 200
xenv(newj) = max0( xenv(newj), newj - newi )
go to 300
200 xenv(newi) = max0( xenv(newi), newi - newj )
300 continue
400 continue
c
lenv = 0
do 310 i = 1, n
lenv = lenv + xenv(i)
310 continue
if (profil .ne. lenv) go to 3100
if (profil + n .gt. alen) go to 3000
if (xenv(1) .ne. 0) go to 3200
c ... reset xenv entries to point to last entry in row
eptr = n
do 500 i = 1, n
eptr = eptr + xenv(i)
xenv(i) = eptr
500 continue
c ... initialize envelope
nzp1 = nz + 1
lenv = lenv + n
if (nzp1 .gt. lenv) go to 700
do 600 i = nzp1, lenv
a(i) = 0.0
600 continue
c ... move entries from packed data structure in front part
c of vector a into their final locations. if the final
c location is occupied (a collision), recursively, move that
c entry on to its final location, ...
700 do 1500 j = 1, n
kstart = cstart (j)
kstop = cstart (j+1) - 1
gnewj = permut (j)
c ... move all entries in j-th column
c statement 800 below is return point for an indefinite
c loop of the form repeat ... until no collisions
if (kstop .lt. kstart) go to 1500
do 1400 k = kstart, kstop
i = connec(k)
if (i .eq. 0) go to 1400
c
newj = gnewj
xaddr = k
x = a(k)
a(k) = 0.0
c
800 newi = permut (i)
connec (xaddr) = 0
c ... get address of permuted (i,j) - element
if (newj - newi) 900, 1000, 1100
c
900 nxaddr = xenv(newi) - (newi - newj - 1)
if (nxaddr .le. xenv(newi-1)) go to 3200
go to 1200
c
1100 nxaddr = xenv(newj) - (newj - newi - 1)
if (nxaddr .le. xenv(newj-1)) go to 3200
c
go to 1200
1000 nxaddr = newi
c ... check for collison
1200 if (nxaddr .gt. nz) go to 1300
nexti = connec (nxaddr)
if (nexti .eq. 0) go to 1300
c collision -- target of current nonzero is still occupied. pick up values in
c target location, store current x, and go back to 800 with the new value for x
nextx = a(nxaddr)
a (nxaddr) = x
x = nextx
c check row and column indices for element with which we collided
i = nexti
nextj = invcol(nxaddr)
newj = permut (nextj)
xaddr = nxaddr
go to 800
1300 a (nxaddr) = a (nxaddr) + x
1400 continue
1500 continue
c ... reset envelope pointers to beginnings of row
c with offset of zero instead of n
do 1600 i = 1, n
cstart(i+1) = xenv(i) - n + 1
1600 continue
cstart(1) = 1
2000 return
3000 call erro('length of vector for envelope too short')
c write (6, 63000)
63000 format (40h0length of vector for envelope too short)
go to 4000
3100 call erro('internal diagnostic -- program failure')
c write (6, 63100)
63100 format (39h0internal diagnostic -- program failure)
go to 4000
3200 call erro('program failure')
c write (6, 63200)
63200 format (34h0program failure, i, j, newi, newj, 4i9)
go to 4000
4000 error = 999
go to 2000
end
|