1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
subroutine ta2lpd(tail,head,ma,n,lp,la,ls)
c
c ta2lpd computes the adjacency vectors lp, la and ls
c from vectors tail and head for a directed graph
c NO CHECKING IS MADE on tail, head and n
c input: tail(ma) = tail nodes
c head(ma) = head nodes
c ma = number of edges
c n = number of nodes
c output: lp(n+1) = pointer vector
c la(ma) = vector of arcs
c ls(ma) = vector of corresponding head nodes
c
integer tail(ma),head(ma),ma,n
integer lp(*),la(ma),ls(ma)
c
integer iarc,inode
c
c first computation of lp
c lp(i+1) = number of tail nodes
c = number of arcs with tail node i+1
c
do 1,inode=1,n+1
lp(inode)=0
1 continue
do 2,iarc=1,ma
lp(tail(iarc)+1)=lp(tail(iarc)+1)+1
2 continue
c
c second computation of lp
c lp(i) = pointer to the first arc
c with tail i in sorted tail
c
lp(1)=1
do 3,inode=2,n
lp(inode)=lp(inode-1)+lp(inode)
3 continue
c
c computation of la and ls
c
do 4,iarc=1,ma
inode=tail(iarc)
la(lp(inode))=iarc
ls(lp(inode))=head(iarc)
lp(inode)=lp(inode)+1
4 continue
c
c last computation of lp
c
do 5,inode=n,1,-1
lp(inode+1)=lp(inode)
5 continue
lp(1)=1
end
c
subroutine ta2lpu(tail,head,ma,n,lp,la,ls)
c
c ta2lpu computes the adjacency vectors lp, la and ls
c from vectors tail and head for an undirected graph
c NO CHECKING IS MADE on tail, head and n
c input: tail(ma) = tail nodes
c head(ma) = head nodes
c ma = number of edges
c n = number of nodes
c output: lp(n+1) = pointer vector
c la(m) = vector of arcs (m=2*ma)
c ls(m) = vector of corresponding head nodes
c
integer tail(ma),head(ma),ma,n
integer lp(*),la(*),ls(*)
c
integer iarc,inode
c
c first computation of lp
c lp(i+1) = number of tail nodes
c = number of arcs with tail node i+1
c
do 1,inode=1,n+1
lp(inode)=0
1 continue
do 2,iarc=1,ma
lp(tail(iarc)+1)=lp(tail(iarc)+1)+1
lp(head(iarc)+1)=lp(head(iarc)+1)+1
2 continue
c
c second computation of lp
c lp(i) = pointer to the first arc
c with tail i in sorted (tail,head)
c
lp(1)=1
do 3,inode=2,n
lp(inode)=lp(inode-1)+lp(inode)
3 continue
c
c computation of la and ls
c
do 4,iarc=1,ma
inode=tail(iarc)
la(lp(inode))=iarc
ls(lp(inode))=head(iarc)
lp(inode)=lp(inode)+1
inode=head(iarc)
la(lp(inode))=iarc
ls(lp(inode))=tail(iarc)
lp(inode)=lp(inode)+1
4 continue
c
c last computation of lp
c
do 5,inode=n,1,-1
lp(inode+1)=lp(inode)
5 continue
lp(1)=1
end
c
subroutine lp2tad(lp,la,ls,n,tail,head)
c
c lp2tad computes the vectors tail and head
c from the adjacency vectors lp, la and ls
c for a directed graph
c NO CHECKING IS MADE on lp, la, ls and n
c input: lp(n+1) = pointer vector
c la(ma) = vector of arcs
c ls(ma) = vector of corresponding head nodes
c n = number of nodes
c output: tail(ma) = tail nodes
c head(ma) = head nodes
c
integer lp(*),la(*),ls(*),n
integer tail(*),head(*)
c
do 1 inod=1,n
do 2 ip=lp(inod),lp(inod+1)-1
tail(la(ip))=inod
head(la(ip))=ls(ip)
2 continue
1 continue
end
c
subroutine lp2tau(lp,la,ls,n,tail,head)
c
c lp2tad computes the vectors tail and head
c from the adjacency vectors lp, la and ls
c for an undirected graph
c NO CHECKING IS MADE on lp, la, ls and n
c input: lp(n+1) = pointer vector
c la(ma) = vector of arcs
c ls(ma) = vector of corresponding head nodes
c n = number of nodes
c output: tail(ma) = tail nodes
c head(ma) = head nodes
c
c
integer lp(*),la(*),ls(*),n
integer tail(*),head(*)
c
integer iarc
c
do 1,inod=1,n
do 2,ip=lp(inod),lp(inod+1)-1
iarc=(la(ip)+1)/2
tail(iarc)=inod
head(iarc)=ls(ip)
2 continue
1 continue
end
c
subroutine findiso(tail,head,ma,n,v)
c
c findiso finds isolated nodes from tail and head description
c of a graph
c NO CHECKING IS MADE on tail, head and n
c input: tail(ma) = tail nodes
c head(ma) = head nodes
c ma = number of edges
c n = number of nodes
c output: v(n) = vector of isolated nodes v(i)=1 is i
c is the number of an isolated node, 0
c otherwise
c
integer tail(ma),head(ma),ma,n,v(n)
c
integer iarc,inode
c
do 1,inode=1,n
v(inode)=0
1 continue
do 2,iarc=1,ma
v(tail(iarc))=1
v(head(iarc))=1
2 continue
end
|