1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
c*****************************************************************************
c from the algorithm written by :
c*****************************************************************************
c robert renka
c oak ridge natl. lab.
c (615) 576-5139
c acm-trans. math. software, vol.10, no. 4, dec., 1984, p. 453.
c*****************************************************************************
subroutine deumesh (n,n4,n6,x,y, iadj,iend,nbt,nu,iero)
integer n,n6,n4,iadj(n6),iend(n),nbt,nu(3,n4),iero
double precision x(n), y(n)
c triangulation of n points in the plane. the triangulation is as nearly
c equiangular as possible.
c
c input parameters -
c x,y - n-vectors of coordinates. (x(i),y(i)) defines node i.
c iadj - vector of length .ge. n6 (= 6*n-9.)
c iend - vector of length .ge. n.
c
c output parameters -
c iadj - adjacency lists of neighbors in counterclockwise order. the
c list for node i+1 follows that for node i where x and y define
c the order. the value 0 denotes the boundary (or a pseudo-node
c at infinity) and is always the last neighbor of a boundary
c node. iadj is unchanged if iero .ne. 0.
c iend - pointers to the ends of adjacency lists (sets of neighbors)
c in iadj. the neighbors of node 1 begin in iadj(1).
c for k .gt. 1, the neighbors of node k begin in iadj(iend(k-1)+1)
c and k has iend(k) - iend(k-1) neighbors including (possibly) the
c boundary. iadj(iend(k)) .eq. 0 iff node k is on the boundary.
c iend is unchanged if iero = 1. if iero = 3 iend contains the indices
c of a sequence of n nodes ordered from left to right where left
c and right are defined by assuming node 1 is to the left of node 2.
c iero - error indicator
c iero = 0 if no errors were encountered.
c iero = 3 if n .ge. 3 and all nodes are collinear.
c
integer nn,k,km1,nl,nr,ind,indx,n0,itemp,ierr,km1d2,kmi,i,kmin
double precision xl,yl,xr,yr,dxr,dyr,xk,yk,dxk,dyk,cprod,sprod
c nn = local copy of n
c k = node (index) to be inserted into iend
c km1 = k-1 - (variable) length of iend
c nl,nr = iend(1), iend(km1) -- leftmost and rightmost nodes in iend as
c viewed from the right of 1-2 when iend contains the initial ordered
c set of nodal indices
c xl,yl,xr,yr = x and y coordinates of nl and nr
c dxr,dyr = xr-xl, yr-yl
c xk,yk = x and y coordinates of node k
c dxk,dyk = xk-xl, yk-yl
c cprod = vector cross product of nl-nr and nl-k -- used to determine
c the position of node k with respect to the line defined by the
c nodes in iend
c sprod = scalar product used to determine the interval containing
c node k when k is on the line defined by the nodes in iend
c ind,indx = indices for iend and iadj, respectively
c n0,itemp = temporary nodes (indices)
c ierr = dummy parameter for call to adnode
c km1d2,kmi,i = km1/2, k-i, do-loop index -- used in iend reordering loop
c kmin = first node index sent to adnode
nn = n
iero = 0
do 732,i=1,3
do 733,j=1,n4
nu(i,j)=0
733 continue
732 continue
c initialize iend, nl, nr, and k
do 734,i=1,n
iend(i)=0
734 continue
do 735,i=1,n6
iadj(i)=0
735 continue
iend(1) = 1
iend(2) = 2
xl = x(1)
yl = y(1)
xr = x(2)
yr = y(2)
k = 2
c begin loop on nodes 3,4,...
1 dxr = xr-xl
dyr = yr-yl
c next loop begins here if nl and nr are unchanged
2 if (k .eq. nn) go to 13
km1 = k
k = km1 + 1
xk = x(k)
yk = y(k)
dxk = xk-xl
dyk = yk-yl
cprod = dxr*dyk - dxk*dyr
if (cprod .gt. 0.) go to 6
if (cprod .lt. 0.) go to 8
c node k lies on the line containing nodes 1,2,...,k-1.
c set sprod to (nl-nr,nl-k).
sprod = dxr*dxk + dyr*dyk
if (sprod .gt. 0.) go to 3
c node k is to the left of nl. insert k as the first
c (leftmost) node in iend and set nl to k.
call shiftd(1,km1,1, iend )
iend(1) = k
xl = xk
yl = yk
go to 1
c node k is to the right of nl. find the leftmost node
c n0 which lies to the right of k. set sprod to (n0-nl,n0-k).
3 do 4 ind = 2,km1
n0 = iend(ind)
sprod = (xl-x(n0))*(xk-x(n0)) + (yl-y(n0))*(yk-y(n0))
if (sprod .ge. 0.) go to 5
4 continue
c node k is to the right of nr. insert k as the last
c (rightmost) node in iend and set nr to k.
iend(k) = k
xr = xk
yr = yk
go to 1
c node k lies between iend(ind-1) and iend(ind). insert k in iend.
5 call shiftd(ind,km1,1, iend )
iend(ind) = k
go to 2
c node k is to the left of nl-nr. reorder iend so that nl
c is the leftmost node as viewed from k.
6 km1d2 = km1/2
do 7 i = 1,km1d2
kmi = k-i
itemp = iend(i)
iend(i) = iend(kmi)
iend(kmi) = itemp
7 continue
c node k is to the right of nl-nr. create a triangulation
c consisting of nodes 1,2,...,k.
8 nl = iend(1)
nr = iend(km1)
c create the adjacency lists for the first k-1 nodes. insert neighbors in
c reverse order. each node has four neighbors except nl and nr which have three.
do 9 ind = 1,km1
n0 = iend(ind)
indx = 4*n0
if (n0 .ge. nl) indx = indx-1
if (n0 .ge. nr) indx = indx-1
iadj(indx) = 0
indx = indx-1
if (ind .lt. km1) iadj(indx) = iend(ind+1)
if (ind .lt. km1) indx = indx-1
iadj(indx) = k
if (ind .eq. 1) go to 9
iadj(indx-1) = iend(ind-1)
9 continue
c create the adjacency list for node k
indx = 5*km1 - 1
iadj(indx) = 0
do 10 ind = 1,km1
indx = indx-1
iadj(indx) = iend(ind)
10 continue
c replace iend elements with pointers to iadj
indx = 0
do 11 ind = 1,km1
indx = indx + 4
if (ind .eq. nl .or. ind .eq. nr) indx = indx-1
iend(ind) = indx
11 continue
indx = indx + k
iend(k) = indx
c add the remaining nodes to the triangulation
if (k .eq. nn) go to 14
kmin = k+1
do 12 k = kmin,nn
call adnode(k,x,y, iadj,iend, ierr)
12 continue
goto 14
c all nodes are collinear
13 iero = 3
return
14 continue
c commented lines below replaced by the following
c last triangle forgotten during processing adjacency lists
c MG 28 May 2002
nbt=0
iee=0
do 15 i=1,n
is=iee+1
iee=iend(i)
ie=iee
ie=ie-1
if (iadj(ie).eq.0) go to 17
ie=iee
itr1=i
itr2=iadj(is)
if(itr2.lt.itr1) goto 17
itr3=iadj(ie)
if(itr3.lt.itr1) goto 17
nbt=nbt+1
nu(1,nbt)=itr1
nu(2,nbt)=itr2
nu(3,nbt)=itr3
17 continue
itr1=i
do 16 i2=is,(ie-1)
itr2=iadj(i2)
if(itr2.lt.itr1) goto 16
itr3=iadj(i2+1)
if(itr3.lt.itr1) goto 16
nbt=nbt+1
nu(1,nbt)=itr1
nu(2,nbt)=itr2
nu(3,nbt)=itr3
16 continue
15 continue
c nbt=0
c iee=0
c do 15 i=1,n
c is=iee+1
c iee=iend(i)
c ie=iee
c if (iadj(ie).eq.0) ie=ie-1
c itr1=i
c do 16 i2=is,(ie-1)
c itr2=iadj(i2)
c if(itr2.lt.itr1) goto 16
c itr3=iadj(i2+1)
c if(itr3.lt.itr1) goto 16
c nbt=nbt+1
c nu(1,nbt)=itr1
c nu(2,nbt)=itr2
c nu(3,nbt)=itr3
c 16 continue
c 15 continue
return
end
c***********************************************************
subroutine shiftd (nfrst,nlast,kk, iarr )
integer nfrst, nlast, kk, iarr(1)
c this routine shifts a set of contiguous elements of an
c integer array kk positions downward (upward if kk .lt. 0).
c
c input parameters -
c nfrst,nlast - bounds on the portion of iarr to be shifted. all
c elements between and including the bounds are
c shifted unless nfrst .gt. nlast, in which case no shift occurs.
c kk - number of positions each element is to be shifted.
c if kk .lt. 0 shift up. if kk .gt. 0 shift down.
c iarr - integer array of length .ge. nlast + max(kk,0).
c
c nfrst, nlast, and kk are not altered by this routine.
c
c output parameter - iarr - shifted array.
integer inc,k,nf,nl,nlp1,ns,nsl,i,ibak,indx,imax
data inc/5/
c inc = do-loop increment (unrolling factor) -- if inc is
c changed, statements must be added to or deleted from the do-loops
c k = local copy of kk
c nf = local copy of nfrst
c nl = local copy of nlast
c nlp1 = nl + 1
c ns = number of shifts
c nsl = number of shifts done in unrolled do-loop (multiple of inc)
c i = do-loop index and index for iarr
c ibak = index for downward shift of iarr
c indx = index for iarr
c imax = bound on do-loop index
k = kk
nf = nfrst
nl = nlast
if (nf .gt. nl .or. k .eq. 0) return
nlp1 = nl + 1
ns = nlp1 - nf
nsl = inc*(ns/inc)
if ( k .lt. 0) go to 4
c shift downward starting from the bottom
if (nsl .le. 0) go to 2
do 1 i = 1,nsl,inc
ibak = nlp1 - i
indx = ibak + k
iarr(indx) = iarr(ibak)
iarr(indx-1) = iarr(ibak-1)
iarr(indx-2) = iarr(ibak-2)
iarr(indx-3) = iarr(ibak-3)
iarr(indx-4) = iarr(ibak-4)
1 continue
c perform the remaining ns-nsl shifts one at a time
2 ibak = nlp1 - nsl
3 if (ibak .le. nf) return
ibak = ibak - 1
indx = ibak + k
iarr(indx) = iarr(ibak)
go to 3
c shift upward starting from the top
4 if (nsl .le. 0) go to 6
imax = nlp1 - inc
do 5 i = nf,imax,inc
indx = i + k
iarr(indx) = iarr(i)
iarr(indx+1) = iarr(i+1)
iarr(indx+2) = iarr(i+2)
iarr(indx+3) = iarr(i+3)
iarr(indx+4) = iarr(i+4)
5 continue
c perform the remaining ns-nsl shifts one at a time
6 i = nsl + nf
7 if (i .gt. nl) return
indx = i + k
iarr(indx) = iarr(i)
i = i + 1
go to 7
end
c*****************************************************************************
subroutine adnode (kk,x,y, iadj,iend, iero)
integer kk, iadj(1), iend(kk), iero
double precision x(kk), y(kk)
logical swptst
external idoigt
c this routine adds node kk to a triangulation of a set of points
c producing a new triangulation. a sequence of edge swaps is then
c applied to the mesh, resulting in an optimal triangulation.
c
c input parameters -
c kk - index of the node to be added to the mesh. kk .ge. 4.
c x,y - vectors of coordinates of the nodes in the mesh. (x(i),y(i))
c defines node i for i = 1,..,kk.
c iadj,iend - triangulation data structure
c kk, x, and y are not altered by this routine.
c
c output parameters -
c iadj,iend - updated with the addition of node kk as the last entry.
c iero - error indicator
c iero = 0 if no errors were encountered.
c iero = 1 if all nodes (including kk) are collinear.
integer k, km1, i1, i2, i3, indkf, indkl, nabor1,
. io1, io2, in1, indk1, ind2f, ind21
double precision xk, yk
c k = local copy of kk
c km1 = k - 1
c i1,i2,i3 = vertices of a triangle containing k
c indkf = iadj index of the first neighbor of k
c indkl = iadj index of the last neighbor of k
c nabor1 = first neighbor of k before any swaps occur
c io1,io2 = adjacent neighbors of k defining an arc to be tested for a swap
c in1 = vertex opposite k -- first neighbor of io2 which precedes io1.
c in1,io1,io2 are in counterclockwise order.
c indk1 = index of io1 in the adjacency list for k
c ind2f = index of the first neighbor of io2
c ind21 = index of io1 in the adjacency list for io2
c xk,yk = x(k), y(k)
iero = 0
k = kk
c initialization
km1 = k - 1
xk = x(k)
yk = y(k)
c add node k to the mesh
call trfind(km1,xk,yk,x,y,iadj,iend, i1,i2,i3)
if (i1 .eq. 0) go to 5
if (i3 .eq. 0) call bdyadd(k,i1,i2, iadj,iend )
if (i3 .ne. 0) call intadd(k,i1,i2,i3, iadj,iend )
c initialize variables for optimization of the mesh
indkf = iend(km1) + 1
indkl = iend(k)
nabor1 = iadj(indkf)
io2 = nabor1
indk1 = indkf + 1
io1 = iadj(indk1)
c begin loop -- find the vertex opposite k
1 ind2f = 1
if (io2 .ne. 1) ind2f = iend(io2-1) + 1
ind21 = idoigt(io2,io1,iadj,iend)
if (ind2f .eq. ind21) go to 2
in1 = iadj(ind21-1)
go to 3
c in1 is the last neighbor of io2
2 ind21 = iend(io2)
in1 = iadj(ind21)
if (in1 .eq. 0) go to 4
c swap test -- if a swap occurs, two new arcs are opposite k
c and must be tested. indk1 and indkf must be decremented.
3 if ( .not. swptst(in1,k,io1,io2,x,y) ) go to 4
call swap(in1,k,io1,io2, iadj,iend )
io1 = in1
indk1 = indk1 - 1
indkf = indkf - 1
go to 1
c no swap occurred. reset io2 and io1, and test for termination.
4 if (io1 .eq. nabor1) return
io2 = io1
indk1 = indk1 + 1
if (indk1 .gt. indkl) indk1 = indkf
io1 = iadj(indk1)
if (io1 .ne. 0) go to 1
return
c all nodes are collinear
5 iero = 1
return
end
c**************************************************************************
subroutine trfind (nst,px,py,x,y,iadj,iend, i1,i2,i3)
integer nst, iadj(1), iend(1), i1, i2, i3
double precision px, py, x(1), y(1)
c this routine locates a point p in a thiessen triangulation, returning the
c vertex indices of a triangle which contains p.
c
c input parameters -
c nst - index of node at which trfind begins search.
c px,py - x and y-coordinates of the point to be located.
c x,y - vectors of coordinates of nodes in the mesh. (x(i),y(i))
c defines node i for i = 1,...,n where n .ge. 3.
c iadj,iend - triangulation data structure
c
c input parameters are not altered by this routine.
c
c output parameters -
c i1,i2,i3 - vertex indices in counter-clockwise order - vertices
c of a triangle containing p if p is an interior node. if p is
c outside of the boundary of the mesh, i1 and i2 are the first (right
c -most) and last (leftmost) nodes which are visible from p, and
c i3 = 0. if p and all of the nodes lie on a single line then i1 = i2
c = i3 = 0.
integer n0,n1,n2,n3,n4,indx,ind,nf,nl,next
double precision xp, yp
double precision x1, y1, x2, y2, x0, y0
logical left
c xp,yp = local variables containing px and py
c n0,n1,n2 = nodes in counterclockwise order defining a
c cone (with vertex n0) containing p
c n3,n4 = nodes opposite n1-n2 and n2-n1, respectively
c indx,ind = indices for iadj
c nf,nl = first and last neighbors of n0 in iadj, or first (rightmost)
c and last (leftmost) nodes visible from p when p is outside the
c boundary
c next = candidate for i1 or i2 when p is outside of the boundary
c left = statement function which computes the sign of a cross product
c (z-component). left(x1,...,y0) = .true. iff (x0,y0) is on or to the
c left of the vector from (x1,y1) to (x2,y2).
c
left(x1,y1,x2,y2,x0,y0) = (x2-x1)*(y0-y1) .ge.
. (x0-x1)*(y2-y1)
xp = px
yp = py
c initialize variables and find a cone containing p
n0 = max0(nst,1)
1 indx = iend(n0)
nl = iadj(indx)
indx = 1
if (n0 .ne. 1) indx = iend(n0-1) + 1
nf = iadj(indx)
n1 = nf
if (nl .ne. 0) go to 3
c n0 is a boundary node. set nl to the last nonzero neighbor of n0.
ind = iend(n0) - 1
nl = iadj(ind)
if ( left(x(n0),y(n0),x(nf),y(nf),xp,yp) ) go to 2
c p is outside the boundary
nl = n0
go to 16
2 if ( left(x(nl),y(nl),x(n0),y(n0),xp,yp) ) go to 4
c p is outside the boundary and n0 is the rightmost visible boundary
c node
i1 = n0
go to 18
c n0 is an interior node. find n1.
3 if ( left(x(n0),y(n0),x(n1),y(n1),xp,yp) ) go to 4
indx = indx + 1
n1 = iadj(indx)
if (n1 .eq. nl) go to 7
go to 3
c p is to the left of arc n0-n1. initialize n2 to the next neighbor
c of n0.
4 indx = indx + 1
n2 = iadj(indx)
if ( .not. left(x(n0),y(n0),x(n2),y(n2),xp,yp) ) go to 8
n1 = n2
if (n1 .ne. nl) go to 4
if ( .not. left(x(n0),y(n0),x(nf),y(nf),xp,yp) ) go to 7
if (xp .eq. x(n0) .and. yp .eq. y(n0)) go to 6
c p is left of or on arcs n0-nb for all neighbors nb of n0.
c all points are collinear iff p is left of nb-n0 for
c all neighbors nb of n0. search the neighbors of n0
c in reverse order. note -- n1 = nl and indx points to nl.
5 if ( .not. left(x(n1),y(n1),x(n0),y(n0),xp,yp) ) go to 6
if (n1 .eq. nf) go to 20
indx = indx - 1
n1 = iadj(indx)
go to 5
c p is to the right of n1-n0, or p=n0. set n0 to n1 and start over.
6 n0 = n1
go to 1
c p is between arcs n0-n1 and n0-nf
7 n2 = nf
c p is contained in a cone defined by line segments n0-n1
c and n0-n2 where n1 is adjacent to n2
8 n3 = n0
9 if ( left(x(n1),y(n1),x(n2),y(n2),xp,yp) ) go to 13
c set n4 to the first neighbor of n2 following n1
indx = iend(n2)
if (iadj(indx) .ne. n1) go to 10
c n1 is the last neighbor of n2. set n4 to the first neighbor.
indx = 1
if (n2 .ne. 1) indx = iend(n2-1) + 1
n4 = iadj(indx)
go to 11
c n1 is not the last neighbor of n2
10 indx = indx-1
if (iadj(indx) .ne. n1) go to 10
n4 = iadj(indx+1)
if (n4 .ne. 0) go to 11
c p is outside the boundary
nf = n2
nl = n1
go to 16
c define a new arc n1-n2 which intersects the line segment n0-p
11 if ( left(x(n0),y(n0),x(n4),y(n4),xp,yp) ) go to 12
n3 = n2
n2 = n4
go to 9
12 n3 = n1
n1 = n4
go to 9
c p is in the triangle (n1,n2,n3) and not on n2-n3. if n3-n1
c or n1-n2 is a boundary arc containing p, treat p as exterior.
13 indx = iend(n1)
if (iadj(indx) .ne. 0) go to 15
c n1 is a boundary node. n3-n1 is a boundary arc iff n3
c is the last nonzero neighbor of n1.
if (n3 .ne. iadj(indx-1)) go to 14
c n3-n1 is a boundary arc
if ( .not. left(x(n1),y(n1),x(n3),y(n3),xp,yp) ) go to 14
c p lies on n1-n3
i1 = n1
i2 = n3
i3 = 0
return
c n3-n1 is not a boundary arc containing p. n1-n2 is a
c boundary arc iff n2 is the first neighbor of n1.
14 indx = 1
if (n1 .ne. 1) indx = iend(n1-1) + 1
if (n2 .ne. iadj(indx)) go to 15
c n1-n2 is a boundary arc
if ( .not. left(x(n2),y(n2),x(n1),y(n1),xp,yp) ) go to 15
c p lies on n1-n2
i1 = n2
i2 = n1
i3 = 0
return
c p does not lie on a boundary arc.
15 i1 = n1
i2 = n2
i3 = n3
return
c nf and nl are adjacent boundary nodes which are visible
c from p. find the first visible boundary node.
c set next to the first neighbor of nf.
16 indx = 1
if (nf .ne. 1) indx = iend(nf-1) + 1
next = iadj(indx)
if ( left(x(nf),y(nf),x(next),y(next),xp,yp) ) go to 17
nf = next
go to 16
c nf is the first (rightmost) visible boundary node
17 i1 = nf
c find the last visible boundary node. nl is the first candidate
c for i2. set next to the last neighbor of nl.
18 indx = iend(nl) - 1
next = iadj(indx)
if ( left(x(next),y(next),x(nl),y(nl),xp,yp) ) go to 19
nl = next
go to 18
c nl is the last (leftmost) visible boundary node
19 i2 = nl
i3 = 0
return
c all points are collinear
20 i1 = 0
i2 = 0
i3 = 0
return
end
c*************************************************************************
subroutine intadd (kk,i1,i2,i3, iadj,iend )
integer kk, i1, i2, i3, iadj(1), iend(kk)
c this routine adds an interior node to a triangulation of kk-1 points.
c iadj and iend are updated with the insertion of node kk in the triangle
c whose vertices are i1, i2, and i3.
c
c input parameters -
c kk - index of node to be inserted. kk .ge. 4.
c i1,i2,i3 - indices of the vertices of a triangle containing node
c kk -- in counterclockwise order.
c iadj,iend - triangulation data structure
c
c kk, i1, i2, and i3 are not altered by this routine.
c
c output parameters -
c iadj,iend - updated with the addition of node kk as the last
c entry. node kk will be connected to nodes i1, i2,
c and i3. no optimization of the mesh is performed.
integer k, km1, n(3), nft(3), ip1, ip2, ip3, indx, nf,
. nl, n1, n2, imin, imax, i, itemp
c k = local copy of kk
c km1 = k - 1
c n = vector containing i1, i2, i3
c nft = pointers to the tops of the 3 sets of iadj
c elements to be shifted downward
c ip1,ip2,ip3 = permutation indices for n and nft
c indx = index for iadj and n
c nf,nl = indices of first and last entries in iadj to be shifted down
c n1,n2 = first 2 vertices of a new triangle -- (n1,n2,kk)
c imin,imax = bounds on do-loop index -- first and last
c elements of iend to be incremented
c i = do-loop index
c itemp = temporary storage location
k = kk
c initialization
n(1) = i1
n(2) = i2
n(3) = i3
c set up nft
do 2 i = 1,3
n1 = n(i)
indx = mod(i,3) + 1
n2 = n(indx)
indx = iend(n1) + 1
c find the index of n2 as a neighbor of n1
1 indx = indx - 1
if (iadj(indx) .ne. n2) go to 1
nft(i) = indx + 1
2 continue
c order the vertices by decreasing magnitude.
c n(ip(i+1)) precedes n(ip(i)) in iend for i = 1,2.
ip1 = 1
ip2 = 2
ip3 = 3
if ( n(2) .le. n(1) ) go to 3
ip1 = 2
ip2 = 1
3 if ( n(3) .le. n(ip1) ) go to 4
ip3 = ip1
ip1 = 3
4 if ( n(ip3) .le. n(ip2) ) go to 5
itemp = ip2
ip2 = ip3
ip3 = itemp
c add node k to the adjacency lists of each vertex and update iend.
c for each vertex, a set of iadj elements is shifted downward and
c and k is inserted. shifting starts at the end of the array.
5 km1 = k - 1
nl = iend(km1)
nf = nft(ip1)
if (nf .le. nl) call shiftd(nf,nl,3, iadj )
iadj(nf+2) = k
imin = n(ip1)
imax = km1
do 6 i = imin,imax
iend(i) = iend(i) + 3
6 continue
c
nl = nf - 1
nf = nft(ip2)
call shiftd(nf,nl,2, iadj )
iadj(nf+1) = k
imax = imin - 1
imin = n(ip2)
do 7 i = imin,imax
iend(i) = iend(i) + 2
7 continue
c
nl = nf - 1
nf = nft(ip3)
call shiftd(nf,nl,1, iadj )
iadj(nf) = k
imax = imin - 1
imin = n(ip3)
do 8 i = imin,imax
iend(i) = iend(i) + 1
8 continue
c add node k to iend and its neighbors to iadj
indx = iend(km1)
iend(k) = indx + 3
do 9 i = 1,3
indx = indx + 1
iadj(indx) = n(i)
9 continue
return
end
c******************************************************************************
subroutine bdyadd (kk,i1,i2, iadj,iend )
integer kk, i1, i2, iadj(1), iend(kk)
c this routine adds a boundary node to a triangulation of kk-1 points
c iadj and iend are updated with the insertion of node kk.
c
c input parameters -
c kk - index of an exterior node to be added. kk .ge. 4.
c i1 - first (rightmost as viewed from kk) boundary node in the mesh
c which is visible from kk - the line segment kk-i1 intersects no arcs.
c i2 - last (leftmost) boundary node which is visible from kk.
c iadj,iend - triangulation data structure
c
c output parameters -
c iadj,iend - updated with the addition of node kk as the last entry.
c node kk will be connected to i1, i2, and all boundary
c nodes between them. no optimization of the mesh is performed.
integer k, km1, nright, nleft, nf, nl, n1, n2, i,
. imin, imax, kend, next, indx
c k = local copy of kk
c km1 = k - 1
c nright,nleft = local copies of i1, i2
c nf,nl = indices of iadj bounding the portion of the array to be shifted
c n1 = iadj index of the first neighbor of nleft
c n2 = iadj index of the last neighbor of nright
c i = do-loop index
c imin,imax = bounds on do-loop index -- first and last
c elements of iend to be incremented
c kend = pointer to the last neighbor of k in iadj
c next = next boundary node to be connected to kk
c indx = index for iadj
k = kk
km1 = k - 1
nright = i1
nleft = i2
c initialize variables
nl = iend(km1)
n1 = 1
if (nleft .ne. 1) n1 = iend(nleft-1) + 1
n2 = iend(nright)
nf = max0(n1,n2)
c insert k as a neighbor of max(nright,nleft)
call shiftd(nf,nl,2, iadj )
iadj(nf+1) = k
imin = max0(nright,nleft)
do 1 i = imin,km1
iend(i) = iend(i) + 2
1 continue
c initialize kend and insert k as a neighbor of min(nright,nleft)
kend = nl + 3
nl = nf - 1
nf = min(n1,n2)
call shiftd(nf,nl,1, iadj )
iadj(nf) = k
imax = imin - 1
imin = min(nright,nleft)
do 2 i = imin,imax
iend(i) = iend(i) + 1
2 continue
c insert nright as the first neighbor of k
iadj(kend) = nright
c initialize indx for loop on boundary nodes between nright and nleft
indx = iend(nright) - 2
3 next = iadj(indx)
if (next .eq. nleft) go to 4
c connect next and k
kend = kend + 1
iadj(kend) = next
indx = iend(next)
iadj(indx) = k
indx = indx - 1
go to 3
c insert nleft and 0 as the last neighbors of k
4 iadj(kend+1) = nleft
kend = kend + 2
iadj(kend) = 0
iend(k) = kend
return
end
c****************************************************************************
subroutine swap (nin1,nin2,nout1,nout2, iadj,iend )
integer nin1, nin2, nout1, nout2, iadj(1), iend(1)
external idoigt
c this subroutine swaps the diagonals in a convex quadrilateral.
c
c input parameters -
c nin1,nin2,nout1,nout2 - nodal indices of a pair of adjacent triangles
c which form a convex quadrilateral. nout1 and nout2 are connected
c by an arc which is to be replaced by the arc nin1-nin2. (nin1,nout1,
c nout2) must be triangle vertices in counterclockwise order.
c
c the above parameters are not altered by this routine.
c
c iadj,iend - triangulation data structure
c
c output parameters - iadj,iend - updated with the arc replacement.
integer in(2), io(2), ip1, ip2, j, k, nf, nl, i,
. imin, imax
c in = nin1 and nin2 ordered by increasing magnitude
c (the neighbors of in(1) precede those of in(2) in iadj)
c io = nout1 and nout2 in increasing order
c ip1,ip2 = permutation of (1,2) such that io(ip1)
c precedes io(ip2) as a neighbor of in(1)
c j,k = permutation of (1,2) used as indices of in and io
c nf,nl = iadj indices boundary a portion of the array to be shifted
c i = iend index
c imin,imax = bounds on the portion of iend to be incremented or decremented
in(1) = nin1
in(2) = nin2
io(1) = nout1
io(2) = nout2
ip1 = 1
c order the indices so that in(1).lt.in(2) and io(1).lt.io(2), and choose
c ip1 and ip2 such that (in(1),io(ip1), io(ip2)) forms a triangle.
if (in(1) .lt. in(2)) go to 1
in(1) = in(2)
in(2) = nin1
ip1 = 2
1 if (io(1) .lt. io(2)) go to 2
io(1) = io(2)
io(2) = nout1
ip1 = 3 - ip1
2 ip2 = 3 - ip1
if (io(2) .lt. in(1)) go to 8
if (in(2) .lt. io(1)) go to 12
c in(1) and io(1) precede in(2) and io(2). for (j,k) =
c (1,2) and (2,1), delete io(k) as a neighbor of io(j)
c by shifting a portion of iadj either up or down and
c and insert in(k) as a neighbor of in(j).
do 7 j = 1,2
k = 3 - j
if (in(j) .gt. io(j)) go to 4
c the neighbors of in(j) precede those of io(j) -- shift down by 1
nf = 1 + idoigt(in(j),io(ip1),iadj,iend)
nl = -1 + idoigt(io(j),io(k),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,1, iadj )
iadj(nf) = in(k)
imin = in(j)
imax = io(j)-1
do 3 i = imin,imax
iend(i) = iend(i) + 1
3 continue
go to 6
c the neighbors of io(j) precede those of in(j) -- shift up by 1
4 nf = 1 + idoigt(io(j),io(k),iadj,iend)
nl = -1 + idoigt(in(j),io(ip2),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,-1, iadj )
iadj(nl) = in(k)
imin = io(j)
imax = in(j) - 1
do 5 i = imin,imax
iend(i) = iend(i) - 1
5 continue
c reverse (ip1,ip2) for (j,k) = (2,1)
6 ip1 = ip2
ip2 = 3 - ip1
7 continue
return
c the vertices are ordered (io(1),io(2),in(1),in(2)).
c delete io(2) by shifting up by 1
8 nf = 1 + idoigt(io(1),io(2),iadj,iend)
nl = -1 + idoigt(io(2),io(1),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,-1, iadj )
imin = io(1)
imax = io(2)-1
do 9 i = imin,imax
iend(i) = iend(i) - 1
9 continue
c delete io(1) by shifting up by 2 and insert in(2)
nf = nl + 2
nl = -1 + idoigt(in(1),io(ip2),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,-2, iadj )
iadj(nl-1) = in(2)
imin = io(2)
imax = in(1)-1
do 10 i = imin,imax
iend(i) = iend(i) - 2
10 continue
c shift up by 1 and insert in(1)
nf = nl + 1
nl = -1 + idoigt(in(2),io(ip1),iadj,iend)
call shiftd(nf,nl,-1, iadj )
iadj(nl) = in(1)
imin = in(1)
imax = in(2)-1
do 11 i = imin,imax
11 iend(i) = iend(i) - 1
return
c the vertices are ordered (in(1),in(2),io(1),io(2)).
c delete io(1) by shifting down by 1
12 nf = 1 + idoigt(io(1),io(2),iadj,iend)
nl = -1 + idoigt(io(2),io(1),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,1, iadj )
imin = io(1)
imax = io(2) - 1
do 13 i = imin,imax
13 iend(i) = iend(i) + 1
c delete io(2) by shifting down by 2 and insert in(1)
nl = nf - 2
nf = 1 + idoigt(in(2),io(ip2),iadj,iend)
if (nf .le. nl) call shiftd(nf,nl,2, iadj )
iadj(nf+1) = in(1)
imin = in(2)
imax = io(1) - 1
do 14 i = imin,imax
14 iend(i) = iend(i) + 2
c shift down by 1 and insert in(2)
nl = nf - 1
nf = 1 + idoigt(in(1),io(ip1),iadj,iend)
call shiftd(nf,nl,1, iadj )
iadj(nf) = in(2)
imin = in(1)
imax = in(2) - 1
do 15 i = imin,imax
15 iend(i) = iend(i) + 1
return
end
c***********************************************************
logical function swptst (in1,in2,io1,io2,x,y)
integer in1, in2, io1, io2
double precision x(1), y(1)
c this function decides whether or not to replace a diagonal arc in a
c quadrilateral with the other diagonal. the determination is based on
c the sizes of the angles contained in the 2 triangles defined by the diagonal.
c the diagonal is chosen to maximize the smallest of the
c six angles over the two pairs of triangles.
c
c input parameters -
c in1,in2,io1,io2 - node indices of the four points defining the
c quadrilateral. io1 and io2 are currently connected by a
c diagonal arc. this arc should be replaced by an arc
c connecting in1, in2 if the decision is made to swap.
c in1,io1,io2 must be in counterclockwise order.
c x,y - vectors of nodal coordinates. (x(i),y(i)) are the coord-
c inates of node i for i = in1,in2, io1, or io2.
c
c none of the input parameters are altered by this routine.
c
c output parameter - swptst - .true. iff the arc connecting
c io1 and io2 is to be replaced
double precision dx11, dx12, dx22, dx21, dy11, dy12, dy22, dy21,
. sin1, sin2, cos1, cos2, sin12
c dx11,dy11 = x,y coordinates of the vector in1-io1
c dx12,dy12 = x,y coordinates of the vector in1-io2
c dx22,dy22 = x,y coordinates of the vector in2-io2
c dx21,dy21 = x,y coordinates of the vector in2-io1
c sin1 = cross product of the vectors in1-io1 and in1-io2 -- proportional
c to sin(t1) where t1 is the angle at in1 formed by the vectors
c cos1 = inner product of the vectors in1-io1 and in1-io2 -- proportional
c to cos(t1)
c sin2 = cross product of the vectors in2-io2 and in2-io1 -- proportional
c to sin(t2) where t2 is the angle at in2 formed by the vectors
c cos2 = inner product of the vectors in2-io2 and in2-io1 -- proportional
c to cos(t2)
c sin12 = sin1*cos2 + cos1*sin2 -- proportional to sin(t1+t2)
swptst = .false.
c compute the vectors containing the angles t1, t2
dx11 = x(io1) - x(in1)
dx12 = x(io2) - x(in1)
dx22 = x(io2) - x(in2)
dx21 = x(io1) - x(in2)
c
dy11 = y(io1) - y(in1)
dy12 = y(io2) - y(in1)
dy22 = y(io2) - y(in2)
dy21 = y(io1) - y(in2)
c compute inner products
cos1 = dx11*dx12 + dy11*dy12
cos2 = dx22*dx21 + dy22*dy21
c the diagonals should be swapped iff (t1+t2) .gt. 180
c degrees. the following two tests insure numerical stability.
if (cos1 .ge. 0. .and. cos2 .ge. 0.) return
if (cos1 .lt. 0. .and. cos2 .lt. 0.) go to 1
c compute vector cross products
sin1 = dx11*dy12 - dx12*dy11
sin2 = dx22*dy21 - dx21*dy22
sin12 = sin1*cos2 + cos1*sin2
if (sin12 .ge. 0.) return
1 swptst = .true.
return
end
c****************************************************************************
integer function idoigt (nvertx,nabor,iadj,iend)
integer nvertx, nabor, iadj(1), iend(1)
c this function returns the index of nabor in the adjacency list for nvertx.
c input parameters -
c nvertx - node whose adjacency list is to be searched.
c nabor - node whose index is to be returned. nabor must be
c connected to nvertx.
c iadj - set of adjacency lists.
c iend - pointers to the ends of adjacency lists in iadj.
c
c output parameter - idoigt - iadj(idoigt) = nabor.
integer nb, indx
nb = nabor
c initialization
indx = iend(nvertx) + 1
c search the list of nvertx neighbors for nb
1 indx = indx - 1
if (iadj(indx) .ne. nb) go to 1
c
idoigt = indx
return
end
|