1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
c algorithm 595, collected algorithms from acm.
c algorithm appeared in acm-trans. math. software, vol.9, no. 1,
c mar., 1983, p. 131-138.
c this program finds one or more hamiltonian circuits in a
c directed graph of n vertices and m arcs.
c input : n number of vertices, ar=ls, pr=lp-1
subroutine hamil(n,m,np1,pr,ar,s,nc,nb,
* pc,ac,vr,vc,p,subr,rbus,tor)
integer pr(np1),pc(np1),ar(m),ac(m),s(n),vr(n),
* vc(n),p(n),subr(n),rbus(n),tor(n)
c exact procedure to find a single hamiltonian circuit, if one exists.
do 1,i=1,n
s(i)=0
1 continue
nc = 1
nb = -1
call hproc(n,pr,ar,nout,nc,nb,s,n+1,pr(n+1),pc,ac,vr, vc,
*p,subr,rbus,tor)
c exact procedure to find all the hamiltonian circuits.
c nc = -1
c nb = -1
c call hproc(n,pr,ar,nout,nc,nb,s,n+1,pr(n+1),pc,ac,vr,vc,
c * p, subr, rbus, tor)
c heuristic procedure to find a single hamiltonian
c circuit, if one exists, without performing more than 2 backtrackings.
c nc = 1
c nb = 2
c call hproc(n,pr,ar,nout,nc,nb,s,n+1, pr(n+1),pc,ac,vr,vc,
c *p,subr,rbus,tor)
c heuristic procedure to find a single hamiltonian
c circuit, if one exists, without performing more than 4 backtrackings.
c nc = 1
c nb = 4
c call hproc(n,pr,ar,nout,nc,nb,s,n+1,pr(n+1),pc,ac,vr,vc,
c *p,subr,rbus,tor)
c heuristic procedure to find at most 2
c hamiltonian circuits, without performing more than 5 backtrackings.
c nc = 2
c nb = 5
c call hproc(n,pr,ar,-1,nc,nb,s,n+1,pr(n+1),pc,ac,vr,vc,
c *p,subr,rbus,tor)
c if (nc.eq.0) return
return
end
subroutine hproc(n,pr,ar,kw,nc,nb,s,np1,m,pc,ac,vr,vc,
*p,subr,rbus,tor)
c
c subroutine to find one or more hamiltonian circuits in a
c directed graph of n vertices ( n .gt. 1 ) represented
c by the integers 1, 2, ..., n and m arcs.
c
c hproc is based on an enumerative algorithm and can be used
c either as an exact procedure or as a heuristic procedure
c (by limiting the number of backtrackings allowed).
c
c entrance to hproc is achieved by using the statement
c call hproc(n,pr,ar,kw,nc,nb,s,n+1,pr(n+1),pc,ac,vr,vc,
c * p,subr,rbus,tor)
c
c the values of the first six parameters must be defined
c by the user prior to calling hproc. hproc needs 2 arrays ( pr
c and pc ) of length n + 1 , 2 arrays ( ar and ac )
c of length m and 7 arrays ( s , vr , vc , subr ,
c rbus and tor ) of length n . these arrays must be
c dimensioned by the user in the calling program.
c
c hproc calls 5 subroutines: pathp, fupd, bupd, iupd, rarc.
c meaning of the input parameters:
c n = number of vertices.
c pr(i) = sum of the out-degrees of vertices 1, ..., i-1
c ( pr(1) = 0 , pr(n+1) = m ).
c ar = adjacency list. the elements from ar(pr(i)+1) to
c ar(pr(i+1)) are a record containing,in any order,
c all the vertices j such that arc (i,j) exists.
c the graph should not contain arcs starting and
c ending at the same vertex.
c kw = unit tape on which to write the hamiltonian cir-
c cuits found, according to format 20i5 . kw = - 1
c if no writing is desired. the circuits are written
c as ordered sequences of n vertices.
c
c meaning of the input-output parameters:
c nc(input) = upper bound on the number of hamiltonian
c circuits to be found ( nc = - 1 if all the
c hamiltonian circuits are to be found).
c nc(output) = number of hamiltonian circuits found.
c nb(input) = - 1 if hproc must be executed as an exact
c procedure.
c = upper bound on the number of backtrackings if
c hproc must be executed as a heuristic procedure.
c nb(output) = number of backtrackings performed. when hproc
c has been executed as a heuristic procedure,
c if nb(output) .lt. nb(input) then the
c result obtained is exact.
c
c meaning of the output parameter:
c s(i) = i-th vertex in the last hamiltonian circuit found.
c
c on return of hproc n, pr and kw are unchanged, while in
c ar the order of the elements within each record may be
c altered.
c
c meaning of the work arrays:
c pc(i) = sum of the in-degrees of vertices 1, ..., i-1
c ( pc(1) = 0 ).
c ac = adjacency list (backward). the elements from
c ac(pc(i)+1) to ac(pc(i+1)) contain, in any
c order, all the vertices j such that arc (j,i)
c exists.
c when an arc is removed from the graph at the k-th level
c of the branch-decision tree, the corresponding elements
c ar(q) and ac(t) are set to - (k*(n+1) + ar(q)) and
c to - (k*(n+1) + ac(t)) , respectively.
c vr(i) = current out-degree of vertex i .
c vc(i) = current in-degree of vertex i .
c subr(i) = - (k*(n+1) + j) if arc (i,j) was implied at
c the k-th level of the branch-decision tree.
c = 0 otherwise.
c rbus(i) = - j if arc (j,i) is currently implied.
c = 0 otherwise.
c tor(k) = q*(m+1) + t if the arc going from s(k) to the
c root, corresponding to ar(q) and to ac(t),
c was removed from the graph at the k-th level
c of the branch-decision tree.
c = 0 otherwise.
c p(i) = pointer for the forward step. the next arc
c starting from i to be considered in the
c branch-decision tree is (i,ar(pr(i)+p(i)).
c
c meaning of the main work simple variables:
c jr = root. the hamiltonian circuits are determined as
c paths starting and ending at jr .
c k = current level of the branch-decision tree.
c m = number of arcs.
c mp1 = m + 1 (used for packing tor ).
c np1 = n + 1 (used for packing ar , ac and subr )
c
integer pr(np1), pc(np1), ar(m), ac(m), s(n), vr(n), vc(n), p(n),
* subr(n), rbus(n), tor(n)
c
c s t e p 0 (initialize).
c
nco = nc
nc = 0
nbo = nb
nb = 0
do 10 i=1,n
vc(i) = 0
subr(i) = 0
rbus(i) = 0
p(i) = 1
10 continue
do 30 i=1,n
j1 = pr(i) + 1
j2 = pr(i+1)
vr(i) = j2 - j1 + 1
if (vr(i).eq.0) return
do 20 j=j1,j2
ja = ar(j)
vc(ja) = vc(ja) + 1
20 continue
30 continue
pc(1) = 0
do 40 i=1,n
if (vc(i).eq.0) return
pc(i+1) = pc(i) + vc(i)
vc(i) = 0
40 continue
do 60 i=1,n
j1 = pr(i) + 1
j2 = pr(i+1)
do 50 j=j1,j2
jj = ar(j)
vc(jj) = vc(jj) + 1
ja = pc(jj) + vc(jj)
ac(ja) = i
50 continue
60 continue
mp1 = m + 1
c select as root jr the vertex i with maximum vc(i)
c (break ties by choosing i with minimum vr(i) ).
maxe = vc(1)
minu = vr(1)
jr = 1
do 100 i=2,n
if (vc(i)-maxe) 100, 70, 80
70 if (vr(i).ge.minu) go to 100
go to 90
80 maxe = vc(i)
90 minu = vr(i)
jr = i
100 continue
k1 = -np1
k = 1
s(1) = jr
c
c s t e p 1 (search for implied arcs).
c
110 do 120 j=1,n
if (vr(j).eq.1) go to 130
if (vc(j).eq.1) go to 170
120 continue
c no further arc can be implied.
go to 220
c arc (j,jl) is implied because vr(j) = 1 .
130 l1 = pr(j) + 1
l2 = pr(j+1)
do 140 l=l1,l2
if (ar(l).gt.0) go to 150
140 continue
150 jl = ar(l)
c find the starting vertex it1 and the ending vertex it2
c of the largest path of implied arcs containing (j,jl) .
call pathp(j, jl, subr, rbus, ar, pr, s, n, np, it1, it2, k, jr,
* m, np1)
if (np.eq.0) go to 160
if (np.eq.(-1)) go to 340
c subroutine pathp found a hamiltonian circuit.
k = k + 1
go to 320
160 subr(j) = k1 - jl
rbus(jl) = j
c remove from the graph all arcs terminating at jl .
call iupd(j, jl, l, ac, ar, pc, pr, vc, vr, k1, n, m, np1)
if (j.eq.0) go to 340
go to 210
c arc (jl,j) is implied because vc(j) = 1 .
170 l1 = pc(j) + 1
l2 = pc(j+1)
do 180 l=l1,l2
if (ac(l).gt.0) go to 190
180 continue
190 jl = ac(l)
c find the starting vertex it1 and the ending vertex it2
c of the largest path of implied arcs containing (jl,j) .
call pathp(jl, j, subr, rbus, ar, pr, s, n, np, it1, it2, k, jr,
* m, np1)
if (np.eq.0) go to 200
if (np.eq.(-1)) go to 340
c subroutine pathp found a hamiltonian circuit.
i = s(k)
k = k + 1
go to 320
200 subr(jl) = k1 - j
rbus(j) = jl
c remove from the graph all arcs emanating from jl .
call iupd(j, jl, l, ar, ac, pr, pc, vr, vc, k1, n, m, np1)
if (j.eq.0) go to 340
c if arc (it2,it1) is in the graph, remove it.
210 call rarc(it2, it1, ar, ac, pr, pc, vr, vc, k1, jj, ll, n, m, np1)
if (jj.eq.(-1)) go to 340
go to 110
c
c s t e p 2 (add implied arcs to s ).
c
220 i = s(k)
if (subr(i).eq.0) go to 230
jsubr = -subr(i) + subr(i)/np1*np1
if (jsubr.eq.jr) go to 340
k = k + 1
s(k) = jsubr
if (k.ne.n) go to 220
if (subr(jsubr).lt.0) go to 320
go to 340
c
c s t e p 3 (branch).
c
230 l1 = pr(i) + p(i)
l2 = pr(i+1)
if (l1.gt.l2) go to 340
c find the next arc (i,jl) to be added to s .
dens = n**3
j1 = 0
j2 = 0
do 310 j=l1,l2
jl = ar(j)
if (jl.lt.0) go to 310
if (vr(jl).gt.0) go to 260
if (subr(jl).eq.0) go to 310
if (jl.eq.jr) go to 310
iend = jl
240 iend = -subr(iend) + subr(iend)/np1*np1
if (subr(iend).ne.0) go to 240
if (vc(jl).lt.vr(iend)) go to 250
score = vr(iend)*n + vc(jl)
go to 280
250 score = vc(jl)*n + vr(iend)
go to 280
260 if (vc(jl).lt.vr(jl)) go to 270
score = vr(jl)*n + vc(jl)
go to 280
270 score = vc(jl)*n + vr(jl)
280 if (dens.le.score) go to 290
dens = score
ipi = j
290 if (j1.eq.0) go to 300
if (j2.eq.0) j2 = j
go to 310
300 j1 = j
310 continue
if (j1.eq.0) go to 340
jl = ar(ipi)
ar(ipi) = ar(j1)
ar(j1) = jl
if (j2.eq.0) j2 = pr(i+1) + 1
p(i) = j2 - pr(i)
k = k + 1
s(k) = jl
k1 = -k*np1
c remove from the graph all arcs emanating from i .
call fupd(ar, ac, pr, pc, vr, vc, i, k1, n, m, np1)
c remove from the graph all arcs terminating at jl .
call fupd(ac, ar, pc, pr, vc, vr, jl, k1, n, m, np1)
tor(k) = 0
c if arc (jl,jr) is in the graph, remove it.
call rarc(jl, jr, ar, ac, pr, pc, vr, vc, k1, jj, ll, n, m, np1)
if (jj.eq.0) go to 110
if (jj.eq.(-1)) go to 340
tor(k) = jj*mp1 + ll
go to 110
c
c s t e p 4 (hamiltonian circuit found).
c
320 nc = nc + 1
if (kw.eq.(-1)) go to 330
c ww s(kj),kj=1,n)
330 if (nc.eq.nco) go to 430
k = k - 1
c
c s t e p 5 (backtrack).
c
340 if (k.le.1) go to 430
ja = s(k)
p(ja) = 1
ja = s(k-1)
if (subr(ja).eq.0) go to 350
c backtracking for an implied arc.
k = k - 1
go to 340
350 if (nb.eq.nbo) go to 430
nb = nb + 1
k1 = -k*np1
k2 = -(k+1)*np1
i = s(k-1)
c backtracking for the arcs implied at level k .
iff = 0
do 360 j=1,n
if (subr(j).gt.k1) go to 360
if (subr(j).lt.k2) go to 360
ja = k1 - subr(j)
rbus(ja) = 0
subr(j) = 0
iff = 1
360 continue
if (iff.eq.1) go to 370
c no arc was implied at level k .
call bupd(ar, ac, pr, pc, vr, vc, i, k1, k2, n, m, np1)
call bupd(ac, ar, pc, pr, vc, vr, s(k), k1, k2, n, m, np1)
if (tor(k).eq.0) go to 420
j1 = tor(k)/mp1
j2 = tor(k) - j1*mp1
ar(j1) = jr
ja = s(k)
vr(ja) = vr(ja) + 1
ac(j2) = s(k)
vc(jr) = vc(jr) + 1
go to 420
c at least one arc was implied at level k .
370 do 410 j=1,n
l1 = pr(j) + 1
l2 = pr(j+1)
do 400 l=l1,l2
jl = ar(l)
if (jl.gt.k1) go to 400
if (jl.lt.k2) go to 400
jl = k1 - jl
ar(l) = jl
vr(j) = vr(j) + 1
ll1 = pc(jl) + 1
ll2 = pc(jl+1)
do 380 ll=ll1,ll2
if (k1-ac(ll).eq.j) go to 390
380 continue
390 ac(ll) = j
vc(jl) = vc(jl) + 1
400 continue
410 continue
420 k = k - 1
go to 230
c
c re-store the original vector ar .
c
430 do 440 j=1,m
if (ar(j).gt.0) go to 440
ar(j) = -ar(j) + ar(j)/np1*np1
440 continue
return
end
subroutine pathp(i,j,subr,rbus,ar,pr,s,n,np,i1,i2,k,
* jr, m, np1)
c subroutine to find the starting vertex i1 and the ending
c vertex i2 of the largest path of implied arcs containing
c arc (i,j) .
c meaning of the output parameter np :
c np = 0 if the path contains l .lt. n vertices.
c = 1 if the path contains n vertices and arc (i2,i1)
c exists (the hamiltonian circuit is stored in s )
c = -1 if the path contains n vertices but arc (i2,i1)
c does not exist.
integer subr(n), rbus(n), ar(m), pr(np1), s(n)
np = 0
l = 1
i1 = i
10 if (rbus(i1).eq.0) go to 20
i1 = rbus(i1)
l = l + 1
go to 10
20 i2 = j
l = l + 1
30 if (subr(i2).eq.0) go to 40
i2 = -subr(i2) + subr(i2)/np1*np1
l = l + 1
go to 30
40 continue
if (l.lt.n) return
c the path contains n vertices.
k1 = -k*np1
l1 = pr(i2) + 1
l2 = pr(i2+1)
do 60 l=l1,l2
if (ar(l).lt.0) go to 50
if (ar(l).eq.i1) go to 70
go to 60
50 if (k1-ar(l).eq.i1) go to 70
60 continue
c no hamiltonian circuit can be determined.
np = -1
return
c a hamiltonian circuit exists. store it in s .
70 np = 1
rbus(j) = i
rbus(i1) = i2
s(n) = rbus(jr)
l = n - 1
80 if (l.eq.k) go to 90
ja = s(l+1)
s(l) = rbus(ja)
l = l - 1
go to 80
90 rbus(i1) = 0
rbus(j) = 0
return
end
subroutine fupd(a1, a2, p1, p2, v1, v2, i1, k1, n, m, np1)
c forward step updating
integer a1(m), a2(m), p1(np1), p2(np1), v1(n), v2(n)
j1 = p1(i1) + 1
j2 = p1(i1+1)
do 30 j=j1,j2
if (a1(j).lt.0) go to 30
ia = a1(j)
l1 = p2(ia) + 1
l2 = p2(ia+1)
do 10 l=l1,l2
if (a2(l).eq.i1) go to 20
10 continue
20 v2(ia) = v2(ia) - 1
a2(l) = k1 - a2(l)
a1(j) = k1 - ia
30 continue
v1(i1) = 0
return
end
subroutine bupd(a1, a2, p1, p2, v1, v2, ii, k1, k2, n, m, np1)
c backtracking step updating
integer a1(m), a2(m), p1(np1), p2(np1), v1(n), v2(n)
l1 = p1(ii) + 1
l2 = p1(ii+1)
do 30 l=l1,l2
if (a1(l).gt.k1) go to 30
if (a1(l).lt.k2) go to 30
ia = k1 - a1(l)
a1(l) = ia
v1(ii) = v1(ii) + 1
ll1 = p2(ia) + 1
ll2 = p2(ia+1)
do 10 ll=ll1,ll2
if (k1-a2(ll).eq.ii) go to 20
10 continue
20 a2(ll) = ii
v2(ia) = v2(ia) + 1
30 continue
return
end
subroutine iupd(ia, ib, l, a1, a2, p1, p2, v1, v2, k1, n, m, np1)
integer a1(m), a2(m), p1(np1), p2(np1), v1(n), v2(n)
c updating for implied arc
m1 = p1(ib) + 1
m2 = p1(ib+1)
do 40 mm=m1,m2
iarc = a1(mm)
if (iarc.lt.0) go to 40
if (v2(iarc).ne.1) go to 10
if (iarc.ne.ia) go to 50
jj = l
go to 30
10 j1 = p2(iarc) + 1
j2 = p2(iarc+1)
do 20 jj=j1,j2
if (a2(jj).eq.ib) go to 30
20 continue
30 a2(jj) = k1 - a2(jj)
v2(iarc) = v2(iarc) - 1
a1(mm) = k1 - iarc
v1(ib) = v1(ib) - 1
40 continue
return
50 ia = 0
return
end
subroutine rarc(ia, ib, ar, ac, pr, pc, vr, vc, k1, jj, ll, n, m,
* np1)
c subroutine to remove arc (ia,ib) from the graph.
c meaning of the output parameters jj and ll :
c jj = location of the element of ar corresponding to the removed arc.
c = 0 if arc (ia,ib) is not in the graph.
c = -1 if, after the removal of arc (ia,ib) , the graph
c would admit no hamiltonian circuit.
c ll = location of the element of ac corresponding to the
c removed arc (defined only if jj .gt. 0 ).
integer ar(m), ac(m), pr(np1), pc(np1), vr(n), vc(n)
j1 = pr(ia) + 1
j2 = pr(ia+1)
do 20 jj=j1,j2
if (ar(jj).lt.0) go to 20
if (ar(jj).ne.ib) go to 20
l1 = pc(ib) + 1
l2 = pc(ib+1)
do 10 ll=l1,l2
if (ac(ll).eq.ia) go to 30
10 continue
20 continue
c arc (ia,ib) is not in the graph.
jj = 0
return
30 if (vr(ia).eq.1) go to 40
if (vc(ib).eq.1) go to 40
ar(jj) = k1 - ib
vr(ia) = vr(ia) - 1
ac(ll) = k1 - ia
vc(ib) = vc(ib) - 1
return
c arc (ia,ib) cannot be removed from the graph.
40 jj = -1
return
end
|