1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
c algorithm 632 collected algorithms from acm.
c algorithm appeared in acm-trans. math. software, vol.11, no. 2,
c jun., 1985, p. 135-140.
subroutine knapsk(n,m,np1,p,w,k,xstar,vstar,bck,
+ lx,lxi,bs,ps,ws,xs,bb,bl,x,xl,b,ubb,f,pbl,q,v,
+ d,min,pbar,wbar,zbar)
integer p(n),w(n),k(m),xstar(n),vstar,bck
integer lx(n),lxi(n),lr,lri,lubi
integer bs(n),ps(np1),ws(np1),xs(n)
integer bb(m,n),bl(m,np1),x(m,n),xl(m,n)
integer b(np1),ubb(n)
integer f(m),pbl(m),q(m),v(m),s,u,ub,vb
integer d(n),min(n),pbar(n),wbar(n),zbar(n)
c step 0 (check on the input data)
vstar = 0
do 1,i=1,n
xstar(i)=0
1 continue
if ( n .le. 1 ) vstar = - 1
if ( m .le. 0 ) vstar = - 1
if ( vstar .lt. 0 ) return
maxw = w(1)
minw = w(1)
isumw = w(1)
ap = p(1)
aw = w(1)
rr = ap/aw
if ( p(1) .le. 0 ) vstar = - 2
if ( w(1) .le. 0 ) vstar = - 2
do 10 j=2,n
if ( p(j) .le. 0 ) vstar = - 2
if ( w(j) .le. 0 ) vstar = - 2
r = rr
if ( w(j) .gt. maxw ) maxw = w(j)
if ( w(j) .lt. minw ) minw = w(j)
isumw = isumw + w(j)
ap = p(j)
aw = w(j)
rr = ap/aw
if ( rr .le. r ) go to 10
vstar = - 6
return
10 continue
if ( k(1) .le. 0 ) vstar = - 2
if ( m .eq. 1 ) go to 250
do 20 i=2,m
if ( k(i) .le. 0 ) vstar = - 2
if ( k(i) .ge. k(i-1) ) go to 20
vstar = - 7
return
20 continue
if ( minw .gt. k(1) ) vstar = - 3
if ( maxw .gt. k(m) ) vstar = - 4
if ( isumw .le. k(m) ) vstar = - 5
if ( vstar .lt. 0 ) return
c step 1 (initialization)
jbck = bck
bck = 0
kub = 0
n1 = n + 1
b(n1) = 1
m1 = m - 1
do 40 j=1,n
b(j) = 1
do 30 i=1,m
x(i,j) = 0
bb(i,j) = 0
30 continue
40 continue
do 50 i=1,m1
q(i) = k(i)
f(i) = -1
50 continue
q(m) = k(m)
vstar = 0
vb = 0
i = 1
call sigma(n,m,p,w,k,1,b,kub,ub
+,np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
do 60 j=1,n
lxi(j) = lx(j)
60 continue
lri = lr
lubi = ub
iflag = 0
c step 2 (heuristic)
70 kub = vstar - vb
call pi(n,m,p,w,q,i,b,bb,kub,bl,lb,pbl,v,xl,
+ np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
if ( lb + vb .le. vstar ) go to 140
vstar = lb + vb
do 90 j=1,n
xstar(j) = 0
do 80 s=1,i
if ( x(s,j) .eq. 0 ) go to 80
xstar(j) = s
go to 90
80 continue
90 continue
ip = pbl(i)
if ( ip .eq. 0 ) go to 110
do 100 j=1,ip
jj = bl(i,j)
if ( xl(i,j) .eq. 1 ) xstar(jj) = i
100 continue
110 i1 = i + 1
do 130 ii=i1,m
ip = pbl(ii)
if ( ip .eq. 0 ) go to 130
do 120 j=1,ip
jj = bl(ii,j)
if ( xl(ii,j) .eq. 1 ) xstar(jj) = ii
120 continue
130 continue
if ( ub .eq. lb ) go to 200
c step 3 (updating)
140 if ( v(i) .eq. 0 ) go to 180
iuv = ub + vb
u = pbl(i)
ibv = 0
do 170 s=1,u
if ( xl(i,s) .eq. 0 ) go to 170
j = bl(i,s)
x(i,j) = 1
q(i) = q(i) - w(j)
vb = vb + p(j)
b(j) = 0
bb(i,j) = f(i)
ubb(j) = iuv
if ( iflag .eq. 1 ) go to 150
lub = iuv
lj = j
li = i
150 f(i) = j
ibv = ibv + p(j)
if ( ibv .eq. v(i) ) go to 180
call par(i,i,ub,iflag,vb,lub,lj,li,f,bb,q,b,n
+, m,np1,lx,lxi,lr,lri,lubi)
if ( iflag .eq. 1 ) go to 160
kub = vstar - vb
call sigma(n,m,p,w,q,i,b,kub,ub
+,np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
lj = n1
160 iuv = ub + vb
if ( iuv .le. vstar ) go to 200
170 continue
180 if ( i .eq. m - 1 ) go to 200
ip1 = i + 1
call par(ip1,i,ub,iflag,vb,lub,lj,li,f,bb,q,b,n
+, m,np1,lx,lxi,lr,lri,lubi)
if ( iflag .eq. 1 ) go to 190
kub = vstar - vb
call sigma(n,m,p,w,q,ip1,b,kub,ub
+,np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
lj = n1
190 if ( ub + vb .le. vstar ) go to 200
i = i + 1
go to 140
c
c step 4 (backtracking)
c
200 if ( i .gt. 0 ) go to 210
bck = bck - 1
return
210 if ( bck .eq. jbck ) return
bck = bck + 1
if ( f(i) .ne. (-1) ) go to 230
do 220 j=1,n
bb(i,j) = 0
220 continue
i = i - 1
go to 200
230 j = f(i)
x(i,j) = 0
b(j) = 1
vb = vb - p(j)
q(i) = q(i) + w(j)
do 240 s=1,n
if ( bb(i,s) .eq. j ) bb(i,s) = 0
240 continue
f(i) = bb(i,j)
if ( ubb(j) .le. vstar ) go to 200
ub = ubb(j) - vb
iflag = 1
go to 70
c particular case ( 0-1 single knapsack problem)
250 if ( maxw .gt. k(1) ) vstar = - 4
if ( isumw .le. k(1) ) vstar = - 5
if ( vstar .lt. 0 ) return
k1 = k(1)
do 260 j=1,n
ps(j) = p(j)
ws(j) = w(j)
260 continue
call skp(n,k1,0,vstar, n,m,np1,bs,ps,ws,xs,d,min,pbar,wbar,zbar)
do 270 j=1,n
xstar(j) = xs(j)
270 continue
bck = 0
return
end
subroutine sigma(n,m,p,w,q,i,b,kub,ub
+,np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
integer p(n),w(n),q(m),b(np1),ub
integer qs,sb
integer lx(n),lxi(n),lr,lri,lubi
integer bs(n),ps(np1),ws(np1),xs(n)
integer d(n),min(n),pbar(n),wbar(n),zbar(n)
ns = 0
qs = 0
do 10 j=i,m
qs = qs + q(j)
10 continue
sb = 0
do 20 j=1,n
lx(j) = 0
if ( b(j) .eq. 0 ) go to 20
ns = ns + 1
bs(ns) = j
ps(ns) = p(j)
ws(ns) = w(j)
sb = sb + w(j)
20 continue
if ( sb .gt. qs ) go to 40
lr = qs - sb
ub = 0
if ( ns .eq. 0 ) return
do 30 j=1,ns
ub = ub + ps(j)
xs(j) = 1
30 continue
go to 50
40 call skp(ns,qs,kub,ub, n,m,np1,bs,ps,ws,xs,d,min,pbar,wbar,zbar)
lr = qs
50 do 60 j=1,ns
jj = bs(j)
lx(jj) = xs(j)
60 continue
return
end
subroutine pi(n,m,p,w,q,i,b,bb,kub,bl,lb,pbl,v,xl,
+ np1,bs,ps,ws,xs,lx,lxi,lr,lri,lubi,
+ d,min,pbar,wbar,zbar)
integer bb(m,n),bl(m,np1),xl(m,n)
integer p(n),w(n),q(m),b(np1),pbl(m),v(m)
integer pb,qs,sb,u
integer lx(n),lxi(n),lr,lri,lubi
integer bs(n),ps(np1),ws(np1),xs(n)
integer d(n),min(n),pbar(n),wbar(n),zbar(n)
c step 1
u = 0
do 10 j=1,n
if ( b(j) .eq. 0 ) go to 10
u = u + 1
bs(u) = j
10 continue
do 20 j=i,m
pbl(j) = 0
v(j) = 0
20 continue
lb = 0
ikub = kub
if ( u .eq. 0 ) return
ns = 0
sb = 0
do 30 j=1,u
jj = bs(j)
if ( bb(i,jj) .ne. 0 ) go to 30
if ( w(jj) .gt. q(i) ) go to 30
ns = ns + 1
sb = sb + w(jj)
bl(i,ns) = jj
ps(ns) = p(jj)
ws(ns) = w(jj)
30 continue
ii = i
c step 2
40 pbl(ii) = ns
if ( sb .gt. q(ii) ) go to 60
pb = 0
if ( ns .eq. 0 ) go to 80
do 50 j=1,ns
pb = pb + ps(j)
xl(ii,j) = 1
50 continue
go to 80
60 qs = q(ii)
kub = 0
if ( ii .eq. m ) kub = ikub
call skp(ns,qs,kub,pb, n,m,np1,bs,ps,ws,xs,d,min,pbar,wbar,zbar)
do 70 j=1,ns
xl(ii,j) = xs(j)
70 continue
80 lb = lb + pb
ikub = ikub - pb
v(ii) = pb
bl(ii,ns+1) = n + 1
c step 3
if ( ii .eq. m ) return
jb = 1
jbs = 0
do 100 j=1,u
if ( bs(j) .lt. bl(ii,jb) ) go to 90
jb = jb + 1
if ( xl(ii,jb-1) .eq. 1 ) go to 100
90 jbs = jbs + 1
bs(jbs) = bs(j)
100 continue
u = jbs
if ( u .eq. 0 ) return
ns = 0
sb = 0
ii = ii + 1
do 110 j=1,u
jj = bs(j)
if( w(jj) .gt. q(ii) ) go to 110
ns = ns + 1
sb = sb + w(jj)
bl(ii,ns) = jj
ps(ns) = p(jj)
ws(ns) = w(jj)
110 continue
go to 40
end
subroutine par(i,ii,ub,iflag,vb,lub,lj,li,f,bb,q,b,n
+, m,np1,lx,lxi,lr,lri,lubi)
integer f(m),bb(m,n),q(m),b(np1),ub,vb,r,s
integer lx(n),lxi(n),lr,lri,lubi
iflag = 0
if ( b(lj) .ne. 0 ) go to 60
i1 = i - 1
if ( i1 .lt. li ) go to 20
iq = 0
do 10 r=li,i1
iq = iq + q(r)
10 continue
if ( iq .gt. lr ) return
20 r = ii
s = f(r)
30 if ( s .ne. (-1) ) go to 40
r = r - 1
s = f(r)
go to 30
40 if ( lx(s) .eq. 0 ) return
if ( s .eq. lj ) go to 50
s = bb(r,s)
go to 30
50 ub = lub - vb
iflag = 1
return
60 i1 = i - 1
if ( i1 .lt. 1 ) go to 80
iq = 0
do 70 r=1,i1
iq = iq + q(r)
70 continue
if ( iq .gt. lri ) return
80 do 90 j=1,n
if ( b(j) .eq. 1 ) go to 90
if ( lxi(j) .eq. 0 ) return
90 continue
ub = lubi - vb
iflag = 1
return
end
subroutine skp(ns,qs,kub,vs,n,m,np1,bs,ps,ws,xs,
+d,min,pbar,wbar,zbar)
integer qs,vs,diff,pr,r,t
integer d(n),min(n),pbar(n),wbar(n),zbar(n)
integer bs(n),ps(np1),ws(np1),xs(n)
vs = kub
ip = 0
ms = qs
do 10 l=1,ns
ll = l
if ( ws(l) .gt. ms ) go to 20
ip = ip + ps(l)
ms = ms - ws(l)
10 continue
20 ll = ll - 1
if ( ms .eq. 0 ) go to 50
ps(ns+1) = 0
ws(ns+1) = qs + 1
lim = ip + ms*ps(ll+2)/ws(ll+2)
a = ip + ps(ll+1)
b = (ws(ll+1) - ms)*ps(ll)
c = ws(ll)
lim1 = a - b/c
if ( lim1 .gt. lim ) lim = lim1
if ( lim .le. vs ) return
mink = qs + 1
min(ns) = mink
do 30 j=2,ns
kk = ns + 2 - j
if ( ws(kk) .lt. mink ) mink = ws(kk)
min(kk-1) = mink
30 continue
do 40 j=1,ns
d(j) = 0
40 continue
pr = 0
lold = ns
ii = 1
go to 170
50 if ( vs .ge. ip ) return
vs = ip
do 60 j=1,ll
xs(j) = 1
60 continue
nn = ll + 1
do 70 j=nn,ns
xs(j) = 0
70 continue
qs = 0
return
80 if ( ws(ii) .le. qs ) go to 90
ii1 = ii + 1
if ( vs .ge. qs*ps(ii1)/ws(ii1) + pr ) go to 280
ii = ii1
go to 80
90 ip = pbar(ii)
ms = qs - wbar(ii)
in = zbar(ii)
ll = ns
if ( in .gt. ns) go to 110
do 100 l=in,ns
ll = l
if ( ws(l) .gt. ms ) go to 160
ip = ip + ps(l)
ms = ms - ws(l)
100 continue
110 if ( vs .ge. ip + pr ) go to 280
vs = ip + pr
mfirst = ms
nn = ii - 1
do 120 j=1,nn
xs(j) = d(j)
120 continue
do 130 j=ii,ll
xs(j) = 1
130 continue
if ( ll .eq. ns ) go to 150
nn = ll + 1
do 140 j=nn,ns
xs(j) = 0
140 continue
150 if ( vs .ne. lim ) go to 280
qs = mfirst
return
160 l = ll
ll = ll - 1
if ( ms .eq. 0 ) go to 110
if ( vs .ge. pr + ip + ms*ps(l)/ws(l) ) go to 280
170 wbar(ii) = qs - ms
pbar(ii) = ip
zbar(ii) = ll + 1
d(ii) = 1
nn = ll - 1
if ( nn .lt. ii ) go to 190
do 180 j=ii,nn
wbar(j+1) = wbar(j) - ws(j)
pbar(j+1) = pbar(j) - ps(j)
zbar(j+1) = ll + 1
d(j+1) = 1
180 continue
190 j1 = ll + 1
do 200 j=j1,lold
wbar(j) = 0
pbar(j) = 0
zbar(j) = j
200 continue
lold = ll
qs = ms
pr = pr + ip
if ( ll - (ns - 2) ) 240, 220, 210
210 ii = ns
go to 250
220 if ( qs .lt. ws(ns) ) go to 230
qs = qs - ws(ns)
pr = pr + ps(ns)
d(ns) = 1
230 ii = ns - 1
go to 250
240 ii = ll + 2
if ( qs .ge. min(ii-1) ) go to 80
250 if ( vs .ge. pr ) go to 270
vs = pr
do 260 j=1,ns
xs(j) = d(j)
260 continue
mfirst = qs
if ( vs .eq. lim ) return
270 if ( d(ns) .eq. 0 ) go to 280
d(ns) = 0
qs = qs + ws(ns)
pr = pr - ps(ns)
280 nn = ii - 1
if ( nn .eq. 0 ) go to 300
do 290 j=1,nn
kk = ii - j
if ( d(kk) .eq. 1 ) go to 310
290 continue
300 qs = mfirst
return
310 r = qs
qs = qs + ws(kk)
pr = pr - ps(kk)
d(kk) = 0
if ( r .lt. min(kk) ) go to 320
ii = kk + 1
go to 80
320 nn = kk + 1
ii = kk
330 if ( vs .ge. pr + qs*ps(nn)/ws(nn) ) go to 280
diff = ws(nn) - ws(kk)
if ( diff ) 390, 340, 350
340 nn = nn + 1
go to 330
350 if ( diff .gt. r ) go to 340
if ( vs .ge. pr + ps(nn) ) go to 340
vs = pr + ps(nn)
do 360 j=1,kk
xs(j) = d(j)
360 continue
jj = kk + 1
do 370 j=jj,ns
xs(j) = 0
370 continue
xs(nn) = 1
mfirst = qs - ws(nn)
if ( vs .ne. lim ) go to 380
qs = mfirst
return
380 r = r - diff
kk = nn
nn = nn + 1
go to 330
390 t = r - diff
if ( t .lt. min(nn) ) go to 340
nbid = nn + 1
if ( vs .ge. pr + ps(nn) + t*ps(nbid)/ws(nbid) ) go to 280
qs = qs - ws(nn)
pr = pr + ps(nn)
d(nn) = 1
ii = nn + 1
wbar(nn) = ws(nn)
pbar(nn) = ps(nn)
zbar(nn) = ii
n1 = nn + 1
do 400 j=n1,lold
wbar(j) = 0
pbar(j) = 0
zbar(j) = j
400 continue
lold = nn
go to 80
end
|