1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
subroutine mesh2b(nbs,n6,n4,lfront,cr,c,nu,tri,front,nbt,err)
c-----------------------------------------------------------------------
c triangulation 2d a partir d'un ensemble de points et d'une frontiere
c de domaine decrite par ses composantes connexes
c-----------------------------------------------------------------------
c entrees :
c cr tableau des coordonnees des points c(1:2,1:nbs)
c nbs nombre de points
c n6=6*(nbs+nbs-2) n4=4*nbs-4
c front tableau definisant la frontiere par composantes connexes de la
c frontiere (i1,i2) front(i1)=front(i2) front(i+1) est le
c point frontiere suivant de front(i) pour i=i1,i2-1 telle que
c la normale a la frontiere soit interne ( la composante
c connexe exterieure tourne dans le sens trigo )
c lfront est la longueur du tableau front
c----------------------------------------------------------------------
c tableaux de travail
c c(2,nbs) tableau d'entiers (copie de coordonnees)
c tri(4*nbs-4) tableau d'entiers
c nu (6*(2*nbs-2)) tableau d entiers contiendra le tableau
c des connectivites ( au debut) a la sortie du sp
c
c sorties :
c nbt nombre de triangles generes
c nu(1:3,nbt) sommets des triangles (tableau des connections)
c (!! nu a dimensionner en entree nu(1:6*(2*nbs-2))
c err si err = 0 alors pas de probleme (ok)
c sinon nbt = 0 et pas de triangulation
c c(1:2,nbs) coordonnees des sommets (en entier) cr n est pas modifie
c---------------------------------------------------------------------------
c hecht-marrocco inria-rocquencourt (39 63 55 14)
c-------------------------------------------------------------------------
integer nbs,nbt,lfront,n6,n4,err
integer c(2,nbs),tri(n4),front(lfront),nu(n6)
double precision cr(2,nbs)
integer i,j,k,tete,i1,i2
c
err = 0
nbt = 0
do 1,i=1,nbs
c(1,i)=0
c(2,i)=0
1 continue
do 2,i=1,n6
nu(i)=0
2 continue
c preparation des donnees
call mshtri (cr,c,nbs,tri,tri(nbs+1),err)
if(err.ne.0) return
c maillage de l enveloppe convexe
call mshcxi (c,nu,tri,nbs,tete,err,n4)
if(err.ne.0) return
c
do 10 i=1,nbs
tri(i)=0
10 continue
i=tete
20 continue
j=nu(6*(i-1)+4)
tri(nu(6*(i-1)+1))=nu(6*(j-1)+1)
i=j
if(i.ne.tete) goto 20
c traitement frontiere
k=0
if(lfront.gt.0) then
call mshfrt(c,nu,nbs,front,lfront,tri,err,n4)
if(err.ne.0) return
do 30 i=1,nbs
tri(i)=0
30 continue
k = 0
i2 = 0
do 40 i=1,lfront
i1=i2
i2=front(i)
if(i1.eq.k) then
k = -i2
elseif(i1.eq.-k) then
k=-k
tri(i1)=i2
else
tri(i1)=i2
endif
40 continue
endif
c construction du tableau nu(1:3,1:nbt)
nbt=0
k = 0
do 200 j=1,6*(nbs+nbs-2),6
if(nu(j+5).ne.0) then
nbt=nbt + 1
do 190 i=0,2
k=k+1
nu(k)=nu(j+i)
190 continue
endif
200 continue
end
c**********************************************************************
integer function mshlcl(c,nu,tete,s,nbs)
integer nbs,c(2,nbs),nu(6,nbs+nbs-2),tete,s
integer x,y,pt,ppt,det
logical init
c
x=c(1,s)
y=c(2,s)
init=.true.
pt=tete
10 continue
ppt=pt
pt=nu(4,pt)
if(pt.ne.tete) then
det=x*c(2,nu(1,pt)) -y*c(1,nu(1,pt))
if(det.lt.0) then
init=.false.
goto 10
elseif(init.and.det.eq.0) then
goto 10
endif
endif
mshlcl=ppt
end
c**********************************************************************
subroutine mshtri (cr,c,nbs,tri,nu,err)
integer nbs,c(1:2,1:nbs),tri(1:nbs),nu(1:nbs),err
double precision cr(1:2,1:nbs)
integer iii,ic,xx,ip,i,j,jc,k,trik,tri3,det,ierr
double precision aa1,aa2,xmin,xmax,ymin,ymax
double precision precis
parameter (precis=2.**15-1.)
c
err = 0
ierr = 0
iii=1
xmin=cr(1,1)
ymin=cr(2,1)
xmax=cr(1,1)
ymax=cr(2,1)
do 10 ic=1,nbs
xmin=min(cr(1,ic),xmin)
ymin=min(cr(2,ic),ymin)
xmax=max(cr(1,ic),xmax)
ymax=max(cr(2,ic),ymax)
tri(ic)=ic
if(cr(1,ic).lt.cr(1,iii)) then
iii=ic
endif
10 continue
aa1 = precis/(xmax-xmin)
aa2 = precis/(ymax-ymin)
aa1 = min(aa1,aa2)
aa2 = aa1*(cr(2,iii)-ymin)
do 20 ic=1,nbs
c(1,ic) = nint(aa1*(cr(1,ic)-cr(1,iii)))
c(2,ic) = nint(aa1*(cr(2,ic)-ymin)-aa2)
nu(ic)= c(1,ic)**2 + c(2,ic)**2
20 continue
c----------------------------------------------------------
call mshtr1 (nu,tri,nbs)
ip = 1
xx=nu(ip)
do 30 jc=1,nbs
if(nu(jc).gt.xx)then
call mshtr1 (nu(ip),tri(ip),jc-ip)
do 25 i=ip,jc-2
if(nu(i).eq.nu(i+1)) then
ierr=ierr+1
c print *,' error les points ',tri(i),tri(i+1),' sont egaux'
endif
25 continue
xx=nu(jc)
ip=jc
endif
ic=tri(jc)
nu(jc)=c(2,ic)
30 continue
call mshtr1 (nu(ip),tri(ip),nbs-ip)
do 35 i=ip,jc-2
if(nu(i).eq.nu(i+1)) then
ierr=ierr+1
c print *,' error les points ',tri(i),tri(i+1),' sont egaux'
endif
35 continue
if(ierr.ne.0) then
err = 2
c print *,' fatal error mshtri:il y a des points confondus'
return
endif
k=2
50 continue
if(k.le.nbs) then
k=k+1
det = c(1,tri(2))*c(2,tri(k)) - c(2,tri(2))*c(1,tri(k))
if(det.eq.0) goto 50
else
c print *,'fatal error mshtri tous les points sont alignes'
c print *,'tri =',(tri(k),k=1,nbs)
err = 3
stop 'fatal error'
endif
trik = tri(k)
do 60 j=k-1,3,-1
tri(j+1)=tri(j)
60 continue
tri(3)=trik
if(det.lt.0) then
tri3=tri(3)
tri(3)=tri(2)
tri(2)=tri3
endif
end
c**********************************************************************
subroutine mshtr1 (criter,record,n)
integer record(n)
integer criter(n)
c
integer i,l,r,j,n
integer rec
integer crit
c
if(n.le.1) return
l=n/2+1
r=n
2 if(l.le.1)goto 20
l=l-1
rec=record(l)
crit=criter(l)
goto 3
20 continue
rec=record(r)
crit=criter(r)
record(r)=record(1)
criter(r)=criter(1)
r=r-1
if(r.eq.1)goto 999
3 j=l
4 i=j
j=2*j
if(j-r)5,6,8
5 if(criter(j).lt.criter(j+1))j=j+1
6 if(crit.ge.criter(j))goto 8
record(i)=record(j)
criter(i)=criter(j)
goto 4
8 record(i)=rec
criter(i)=crit
goto 2
999 record(1)=rec
criter(1)=crit
return
end
c**********************************************************************
subroutine mshcvx(direct,c,nu,pfold,nbs,err)
integer nbs,c(2,nbs),nu(6,nbs+nbs-2),pfold,err
logical direct
integer pp,ps,i1,i2,i3,i4,i5,i6
integer pf,psf,ppf,s1,s2,s3,t,t4,t5,a4,a5,det,tt4,tt5
if(direct) then
pp=3
ps=4
i1=1
i2=3
i3=2
i4=6
i5=5
i6=4
else
pp=4
ps=3
i1=1
i2=2
i3=3
i4=4
i5=5
i6=6
endif
10 continue
ppf=pfold
pf =nu(ps,pfold)
psf=nu(ps,pf)
s1=nu(1,ppf)
s2=nu(1,pf)
s3=nu(1,psf)
det = ( c(1,s2) - c(1,s1) ) * ( c(2,s3) - c(2,s1) )
& - ( c(2,s2) - c(2,s1) ) * ( c(1,s3) - c(1,s1) )
if(((.not.direct).and.det.gt.0).or.(direct.and.det.lt.0)) then
if(direct) then
tt4 = nu(2,ppf)
tt5 = nu(2,pf)
else
tt4 = nu(2,pf)
tt5 = nu(2,psf)
endif
t4 = tt4/(2**3)
t5 = tt5/(2**3)
a4 = tt4 -8 * t4
a5 = tt5 -8 * t5
nu(ps,ppf) = psf
nu(pp,psf) = ppf
t = pf
if(direct) then
nu(2,ppf) = (2**3) * t + i6
else
nu(2,psf) = (2**3) * t + i6
endif
nu(i1,t ) = s1
nu(i2,t ) = s2
nu(i3,t ) = s3
nu(i4,t ) = (2**3) * t4 + a4
nu(i5,t ) = (2**3) * t5 + a5
if(direct) then
nu(i6,t ) = -ppf
else
nu(i6,t ) = -psf
endif
nu(a4,t4) = (2**3) * t + i4
nu(a5,t5) = (2**3) * t + i5
call mshopt (c,nu,t5,a5,nbs,err)
if(err.ne.0) return
goto 10
endif
end
c**********************************************************************
subroutine mshcxi (c,nu,tri,nbs,tete,err,n4)
integer nbs,c(2,nbs),nu(6,2*nbs-2),tri(n4),tete
integer mshlcl,err,n4
integer i,j,s,t,pf,ppf,psf,npf,pp,ps,taf,iaf,free,ttaf
parameter (pp=3,ps=4)
do 10 i=1,nbs+nbs-2
nu(1,i)=i+1
do 10 j=2,6
nu(j,i)=0
10 continue
nu(1,nbs+nbs-2)=0
free = 1
t=free
free = nu(1,free)
tete=free
pf =free
do 20 i=1,3
nu(i ,t) = tri(i)
nu(3+i,t) = -pf
ppf = pf
free = nu(1,pf)
pf = free
if(i.eq.3) pf=tete
nu(1,ppf) = tri(i)
nu(2,ppf) = i + 3 + (2**3) * t
nu(ps,ppf) = pf
nu(pp,pf ) = ppf
20 continue
do 30 i=4,nbs
s=tri(i)
pf=mshlcl(c,nu,tete,s,nbs)
t=free
free = nu(1,free)
npf = free
free = nu(1,free)
ppf = nu(pp,pf)
psf = nu(ps,pf)
ttaf = nu(2,pf)
taf = ttaf / (2**3)
iaf = ttaf - (2**3) * taf
nu(1,t) = s
nu(2,t) = nu(1,psf)
nu(3,t) = nu(1,pf )
nu(4,t) = -npf
nu(5,t) = (2**3) * taf + iaf
nu(6,t) = -pf
nu(iaf,taf) = (2**3) * t + 5
nu(ps,npf) = psf
nu(ps,pf ) = npf
nu(pp,npf) = pf
nu(pp,psf) = npf
nu(1,npf) = s
nu(2,npf) = (2**3) * t + 4
nu(2,pf ) = (2**3) * t + 6
call mshopt (c,nu,t,5,nbs,err)
if(err.ne.0) return
call mshcvx (.true. ,c,nu,npf,nbs,err)
if(err.ne.0) return
call mshcvx (.false.,c,nu,npf,nbs,err)
if(err.ne.0) return
30 continue
end
c**********************************************************************
subroutine mshopt (c,nu,t,a,nbs,err)
integer nbs,c(2,nbs),nu(6,nbs+nbs-2),t,a,err
integer vide
parameter (vide=-2**30)
integer mxpile
parameter (mxpile=512)
integer pile(2,mxpile)
integer t1,t2,i,s1,s2,s3,s4,sin1,cos1,sin2,cos2,sgn
integer tt1,tt,i11,i12,i13,i21,i22,i23,a1,a2,aa,mod3(1:3)
double precision reel1,reel2
double precision reel8
data mod3/2,3,1/
i=1
pile(1,i) = t
pile(2,i) = a
10 continue
if(i.gt.0) then
t1=pile(1,i)
a1=pile(2,i)
i=i-1
if(t1.le.0) goto 10
tt1 = nu(a1,t1)
if(tt1.le.0) goto 10
t2 = tt1/(2**3)
a2 = tt1-t2*(2**3)
i11 = a1 -3
i12 = mod3(i11)
i13 = mod3(i12)
i21 = a2 -3
i22 = mod3(i21)
i23 = mod3(i22)
s1 = nu(i13,t1)
s2 = nu(i11,t1)
s3 = nu(i12,t1)
s4 = nu(i23,t2)
sin1 = (c(2,s3)-c(2,s1)) * (c(1,s2)-c(1,s1))
& - (c(1,s3)-c(1,s1)) * (c(2,s2)-c(2,s1))
cos1 = (c(1,s3)-c(1,s1)) * (c(1,s3)-c(1,s2))
& + (c(2,s3)-c(2,s1)) * (c(2,s3)-c(2,s2))
if(sin1.eq.0.and.cos1.eq.0) then
c print *,'fatal error mshopt:'
c & ,'3 points confondus ',s1,s2,s3
err = 12
return
end if
sin2 = (c(1,s4)-c(1,s1)) * (c(2,s2)-c(2,s1))
& - (c(2,s4)-c(2,s1)) * (c(1,s2)-c(1,s1))
cos2 = (c(1,s4)-c(1,s2)) * (c(1,s4)-c(1,s1))
& + (c(2,s4)-c(2,s2)) * (c(2,s4)-c(2,s1))
reel1=float(cos2)*float(sin1)
reel2=float(cos1)*float(sin2)
if(abs(reel1)+abs(reel2).ge.2**30) then
reel8=dble(cos2)*dble(sin1)
& +dble(cos1)*dble(sin2)
reel8=min(max(reel8,-1.d0),1.d0)
sgn=reel8
else
sgn = cos2*sin1 + cos1*sin2
endif
if(min(max(sgn,-1),+1)*sin1.ge.0) goto 10
nu(i12,t1) = s4
nu(i22,t2) = s1
tt1 = nu(i22+3,t2)
nu(a1 ,t1) = tt1
if(tt1.gt.0) then
tt=tt1/(2**3)
aa = tt1-(2**3)*tt
nu(aa,tt)= a1 + (2**3) * t1
elseif(tt1.ne.vide) then
nu(2,-tt1)= a1 + (2**3) * t1
endif
tt1 = nu(i12+3,t1)
nu(a2 ,t2) = tt1
if(tt1.gt.0) then
tt=tt1/(2**3)
aa=tt1-(2**3)*tt
nu(aa,tt)= a2 + (2**3) * t2
elseif(tt1.ne.vide) then
nu(2,-tt1)= a2 + (2**3) * t2
endif
nu(i12+3,t1) = i22+3 + (2**3)*t2
nu(i22+3,t2) = i12+3 + (2**3)*t1
if(i+4.gt.mxpile) then
c print *,' fatal error mshopt la pile est trop petite ',mxpile
err =13
return
endif
c
i=i+1
pile(1,i)=t1
pile(2,i)=a1
i=i+1
pile(1,i)=t2
pile(2,i)=a2
i=i+1
pile(1,i)=t1
pile(2,i)=i13+3
i=i+1
pile(1,i)=t2
pile(2,i)=i23+3
goto 10
endif
end
c**********************************************************************
subroutine mshfrt (c,nu,nbs,frt,lfrt,w,err,n4)
integer nbs,c(2,nbs),nu(6,nbs+nbs-2)
integer lfrt,frt(lfrt),err,w(n4)
integer i,ifrt,sinit,lnu,is,ie,tinter,nbac,nbaf,nbacpp
integer s0,s1,s2,ta,is1,it,s2t,s3t,det2,det3
integer p3(1:3)
integer vide
parameter (vide=-2**30)
logical fin
data p3/2,3,1/
if(lfrt.eq.0) return
tinter =0
ifrt=0
lnu = nbs+nbs-2
c inite du tableau w
do 10 i=1,nbs
w(i)=-1
10 continue
nbaf = 0
s1 = 0
sinit= 0
fin =.true.
do 20 i=1,lfrt
s0 = s1
s1 = frt(i)
if(s1.le.0.or.s1.gt.nbs) then
err=5
c print *,' fatal error mshfrt '
c print *,' le tableau des la frontiere est mauvais en ',i,s1
return
endif
if(s0.eq.sinit) then
if(fin) then
sinit=s1
else
nbaf = nbaf + 1
if(w(s0).ne.-1) then
c print *,'fatal error mshfrt : la frontiere est croisee '
c & ,' en ',s0
err=6
endif
w(s0)=i
endif
fin=.not.fin
else
nbaf = nbaf + 1
if(w(s0).ne.-1) then
c print *,'fatal error mshfrt : la frontiere est croisee '
c & ,' en ',s0
err=6
endif
w(s0)=i
endif
20 continue
if(sinit.ne.s1) then
c print *,'warning mshfrt:la frontiere n''est pas fermee'
c & ,' on la ferme avec l''arete ',s1,sinit
if(w(s1).ne.-1) then
c print *,'fatal error mshfrt : la frontiere est croisee '
c & ,' en ',s1
err=6
endif
w(s1)=sinit
nbaf = nbaf + 1
endif
nbac = 0
nbacpp = 1
30 continue
if(err.ne.0) return
if(nbac.lt.nbaf) then
if(nbacpp.eq.0) then
err = 7
c print *,' fatal error mshfrt :l''algorithme boucle :'
c & ,nbaf,nbac
c print *,' la frontiere est certainement mal orientee '
return
endif
c on s'occupe des aretes du maillage et frontiere de omega
c---------------------------------------------------------------------
nbacpp = 0
do 60 ie=1,lnu
if(nu(5,ie).ne.0) then
do 50 is=1,3
s1 =nu( is ,ie)
s2t =nu( p3(is),ie)
if(w(s1).gt.0) then
s2 = frt(w(s1))
if(s2.eq.s2t) then
tinter = ie
nbacpp = nbacpp + 1
w(s1) = 0
if(nu(is+3,ie).gt.0) then
ta = nu(is+3,ie) /(2**3)
i = nu(is+3,ie)-(2**3) * ta
nu(i,ta)=vide
endif
nu(is+3,ie)=vide
else
it = ie
is1 = is
s3t = nu(p3(p3(is)),it)
det2 = (c(1,s2t)-c(1,s1))*(c(2,s2)-c(2,s1))
& - (c(2,s2t)-c(2,s1))*(c(1,s2)-c(1,s1))
det3 = (c(1,s3t)-c(1,s1))*(c(2,s2)-c(2,s1))
& - (c(2,s3t)-c(2,s1))*(c(1,s2)-c(1,s1))
if(det2.ge.0.and.det3.le.0) then
if(det2.eq.0) then
if(w(s2t).eq.-1) then
c print *,' fatal error mshfrt: le point ',s2t
c & ,' qui ne doit pas etre frontiere , l''est'
err = 10
endif
goto 50
endif
if(det3.eq.0) then
if(w(s3t).eq.-1) then
c print *,' fatal error mshfrt: le point ',s3t
c & ,' qui ne doit pas etre frontiere , l''est'
err = 10
endif
goto 50
endif
call mshfr1 (c,nu,nbs,it,is1,s2,err)
if(err.ne.0) return
tinter=it
w(s1) = 0
nbacpp = nbacpp + 1
endif
endif
endif
50 continue
endif
60 continue
nbac = nbac + nbacpp
goto 30
endif
i=2
w(1)=tinter
w(2)=3
nu(1,tinter) = -nu(1,tinter)
70 continue
if(i.gt.0) then
w(i)=w(i)+1
if(w(i).le.6) then
ta=nu(w(i),w(i-1))
if(ta.gt.0) then
ta = ta / (2**3)
if(nu(1,ta).gt.0) then
w(i+1)=ta
w(i+2)=3
i=i+2
nu(1,ta)=-nu(1,ta)
endif
endif
else
i=i-2
endif
goto 70
endif
do 90 ie=1,lnu
if(nu(1,ie).lt.0) then
nu(1,ie)=-nu(1,ie)
else
do 80 i=1,6
nu(i,ie)=0
80 continue
endif
90 continue
end
c**********************************************************************
subroutine mshfr1 (c,nu,nbs,it1,is1,s2,err)
integer nbs,c(2,nbs),nu(6,nbs+nbs-2),is1,s2,err,it1
integer lstmx
parameter (lstmx=256)
integer lst(3,lstmx)
integer s1,s3,x,y,det,nbac,s2t,s3t,t,ta
integer l1,l2,l3,la,p3(1:5)
logical direct
data p3 /2,3,1,2,3/
direct = .true.
t = it1
s1 = nu(is1,t)
x = c(1,s2)-c(1,s1)
y = c(2,s2)-c(2,s1)
nbac = 0
l1 = is1
l2 = p3(l1)
l3 = p3(l2)
s2t = nu(l2,t)
s3t = nu(l3,t)
la = l2 + 3
20 continue
nbac = nbac + 1
if(nbac.gt.lstmx) then
c print *,' fatal error mshfr1 : lst trop petit ',nbac,lstmx
err =8
return
endif
lst(2,nbac) = t
lst(3,nbac) = la
ta = nu(la,t)
if(ta.le.0) then
c print *,' fatal error mshfr1:la frontiere est croisee en ',t
err =9
return
endif
t = ta/8
la = ta-8*t
s3 = nu(p3(la-2),t)
if(s3.ne.s2) then
det = x*(c(2,s3)-c(2,s1))-y*(c(1,s3)-c(1,s1))
if(det.gt.0) then
la = 3+p3(la-3)
elseif(det.lt.0) then
la = 3+p3(la-2)
else
c print *,' fatal error mshfr1: le point ',s3
c & ,' qui ne doit pas etre frontiere , l''est'
err = 10
return
endif
goto 20
endif
call mshfr2 (c,nu,nbs,lst,nbac,it1,s1,s2)
return
end
c**********************************************************************
subroutine mshfr2 (c,nu,nbs,lst,nbac,t,ss1,ss2)
integer nbs,nbac,c(2,nbs),nu(6,nbs+nbs-2),lst(3,nbac)
integer t,ss1,ss2
integer ptlst,ttlst,pslst,pplst,s1,s2,s3,s4,x41,y41,x,y
integer i,t1,a1,tt1,t2,a2,tt,i11,i12,i13,i21,i22,i23,aas,aa
integer det1,det4,det2,det3
integer mod3(3)
integer vide
parameter (vide=-2**30)
data mod3/2,3,1/
x = c(1,ss1)-c(1,ss2)
y = c(2,ss1)-c(2,ss2)
do 10 i=1,nbac-1
lst(1,i)=i+1
10 continue
lst(1,nbac)=0
ttlst = 1
20 continue
ptlst = ttlst
pplst = 0
30 continue
if(ptlst.gt.0) then
t1=lst(2,ptlst)
a1=lst(3,ptlst)
tt1 = nu(a1,t1)
t2 = tt1/(2**3)
a2 = tt1-t2*(2**3)
i11 = a1 -3
i12 = mod3(i11)
i13 = mod3(i12)
i21 = a2 -3
i22 = mod3(i21)
i23 = mod3(i22)
s1 = nu(i13,t1)
s2 = nu(i11,t1)
s3 = nu(i12,t1)
s4 = nu(i23,t2)
x41 = c(1,s4)-c(1,s1)
y41 = c(2,s4)-c(2,s1)
det2 = (c(1,s2)-c(1,s1))*y41-(c(2,s2)-c(2,s1))*x41
det3 = (c(1,s3)-c(1,s1))*y41-(c(2,s3)-c(2,s1))*x41
if(det2.gt.0.and.det3.lt.0) then
nu(i12,t1) = s4
nu(i22,t2) = s1
pslst=lst(1,ptlst)
if(pslst.gt.0) then
aas=lst(3,pslst)
if(aas.eq.i22+3) then
lst(2,pslst) = t1
lst(3,pslst) = i11 + 3
endif
endif
tt1 = nu(i22+3,t2)
nu(a1 ,t1) = tt1
if(tt1.gt.0) then
tt=tt1/(2**3)
aa = tt1-(2**3)*tt
nu(aa,tt)= a1 + (2**3) * t1
elseif(tt1.ne.vide) then
nu(2,-tt1)= a1 + (2**3) * t1
endif
tt1 = nu(i12+3,t1)
nu(a2 ,t2) = tt1
if(tt1.gt.0) then
tt=tt1/(2**3)
aa=tt1-(2**3)*tt
nu(aa,tt)= a2 + (2**3) * t2
elseif(tt1.ne.vide) then
nu(2,-tt1)= a2 + (2**3) * t2
endif
nu(i12+3,t1) = i22+3 + (2**3)*t2
nu(i22+3,t2) = i12+3 + (2**3)*t1
det1 = (c(1,s1)-c(1,ss1))*y-(c(2,s1)-c(2,ss1))*x
det4 = (c(1,s4)-c(1,ss1))*y-(c(2,s4)-c(2,ss1))*x
if(det1.lt.0.and.det4.gt.0) then
lst(2,ptlst) = t2
lst(3,ptlst) = i22+3
elseif(det1.gt.0.and.det4.lt.0) then
lst(2,ptlst) = t1
lst(3,ptlst) = i12+3
else
if(pplst.eq.0) then
ttlst = lst(1,ptlst)
ptlst = ttlst
else
ptlst = lst(1,ptlst)
lst(1,pplst) = ptlst
endif
goto 30
endif
endif
pplst = ptlst
ptlst = lst(1,ptlst)
goto 30
endif
if(ttlst.ne.0) goto 20
nu(i12+3,t1) = vide
nu(i22+3,t2) = vide
t = t2
do 40 i=1,nbac
call mshopt (c,nu,lst(2,i),4,nbs,ierr)
call mshopt (c,nu,lst(2,i),5,nbs,ierr)
call mshopt (c,nu,lst(2,i),6,nbs,ierr)
40 continue
end
|