1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
subroutine permuto(n,n3,n4,c,f,d, crit,loc3n,work4n)
implicit doubleprecision (a-h,o-z)
dimension c(n,n),f(n,n),d(n,n),loc3n(n3),work4n(n4)
dimension bp(7),bpn(7),bpb(7)
c common /hgwc/ bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3
crit=0.d0
do 1,i=1,n3
loc3n(i)=0
1 continue
nc=n
nf=n
nd=n
call hgw(n, c, f, d, nc, nf, nd, loc3n, work4n,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
crit=work4n(1)
return
end
subroutine hgw(n,c,f,d,nc,nf,nd,loc3n,work4n,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
implicit doubleprecision (a-h,o-z)
dimension c(nc,1),f(nf,1),d(nd,1),loc3n(1),work4n(1)
dimension bp(7),bpn(7),bpb(7)
ibest=1
jbest=1
c
if (n.le.1) return
n1 = n
n2 = n + n
n3 = 3*n
c initialize recurrence data
call initrd(c,f,d,nc,nf,nd,pnorm,loc3n(n1+1),loc3n(n2+1),
* work4n(1), work4n(n1+1), work4n(n2+1), work4n(n3+1),
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
obj = (bp(3)*rfnk1+bp(5))*rfnk
nm1 = n - 1
c
do 30 kp1=1,nm1
k = kp1 - 1
c select candidates for position kp1 in s' and l' to give a
c maximal reduction in the average objective function.
delbst = pnorm
c delbst need only be larger than the rounding error in delta
do 20 i=kp1,n
is = n1 + i
ibar = loc3n(is)
c
do 10 j=kp1,n
jl = n2 + j
c pre-evaluate effect on obj of assignment ibar<->loc3n(jl)
temp = delta(ibar,loc3n(jl),c,f,d,nc,nf,nd,loc3n(n1+1),
* loc3n(n2+1),work4n(1),work4n(n1+1),work4n(n2+1),
* work4n(n3+1),
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
if (temp.ge.delbst) go to 10
c got an improvement,so save it
ibest = i
jbest = j
delbst = temp
bpb(1) = bpn(1)
bpb(2) = bpn(2)
bpb(3) = bpn(3)
bpb(4) = bpn(4)
bpb(5) = bpn(5)
bpb(6) = bpn(6)
bpb(7) = bpn(7)
10 continue
c
20 continue
c exchange best items into position kp1
kp1s = n1 + kp1
kp1l = n2 + kp1
ibests = n1 + ibest
jbestl = n2 + jbest
itemp = loc3n(kp1s)
loc3n(kp1s) = loc3n(ibests)
loc3n(ibests) = itemp
jtemp = loc3n(kp1l)
loc3n(kp1l) = loc3n(jbestl)
loc3n(jbestl) = jtemp
obj = obj + delbst
c update recurrence data
if (kp1.ne.nm1) call updrd(f, d, nf, nd, loc3n(n1+1),
* loc3n(n2+1), work4n(1), work4n(n1+1), work4n(n2+1),
* work4n(n3+1),
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
30 continue
c
c the final iteration, with k=n-1, is not performed since there is only one
c candidate pair and it is already in place. now unscramble the permutation.
c
do 40 i=1,n
il = n2 + i
is = n1 + i
ls = loc3n(is)
loc3n(ls) = loc3n(il)
40 continue
c the construction phase is now complete. the remaining code tries to
c improve the current approximate solution using pair exchanges.if the
c user wishes to trade solution quality for speed of computation, the
c following statements up to and including label 90 may be omitted.
do 70 m=1,n
c at most n times
delbst = 0.d0
do 60 i=2,n
im1 = i - 1
c
do 50 j=1,im1
temp = deltx(i,j,c,f,d,nc,nf,nd,loc3n,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
if (temp.ge.delbst) go to 50
c got an improvement,so save it
ibest = i
jbest = j
delbst = temp
50 continue
60 continue
if (delbst.ge.0.d0) go to 80
c perform exchange
li = loc3n(ibest)
lj = loc3n(jbest)
loc3n(ibest) = lj
loc3n(jbest) = li
obj = obj + delbst
70 continue
c
80 continue
work4n(1) = obj
return
end
doubleprecision function delta(ibar,jbar,c,f,d,nc,nf,nd,ls,ll,w1,
+ w2,w3,w4,bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
implicit doubleprecision (a-h,o-z)
dimension c(nc,1),f(nf,1),d(nd,1),ls(1),ll(1),w1(1),w2(1),
* w3(1), w4(1)
dimension bp(7),bpn(7),bpb(7)
c called by the quadratic assignment heuristic hgw. returns the
c change in obj (new - old) that would be produced by transferring
c ibar from s to s' and jbar from l to l'. these transfers are only
c virtual. on exit bpn contains the corresponding new values of bp. f
c and d are not assumed symmetric. assert:k.le.n1-2
db1 = 0.d0
dbp2 = w1(ibar)*w2(jbar) + w3(ibar)*w4(jbar)
if (k.eq.0) go to 20
do 10 m=1,k
m1 = ls(m)
lm1 = ll(m)
f1 = f(ibar,m1)
f2 = f(m1,ibar)
d1 = d(jbar,lm1)
d2 = d(lm1,jbar)
db1 = db1 + f1*d1 + f2*d2
dbp2 = dbp2 - f2*w2(lm1) - f1*w4(lm1) - w1(m1)*d2 - w3(m1)*d1
10 continue
dbp2 = dbp2 + db1
20 continue
c the average objective function, obj, for the current partial
c permutation is calculable from the contents of the array bp,
c although we do not do so explicitly. we now construct delta, the
c anticipated change in obj, from the corresponding change in bp.
bpn(1) = bp(1) + db1
bpn(2) = bp(2) + dbp2
bpn(6) = bp(6) - w1(ibar) - w3(ibar)
bpn(7) = bp(7) - w2(jbar) - w4(jbar)
bpn(3) = bpn(6)*bpn(7)
if (k.ge.n1-2) bpn(3) = 0.d0
bpn(4) = bp(4) + c(ibar,jbar)
dbp5 = c(ibar,jbar)
kp1 = k + 1
c
do 30 m=kp1,n1
m1 = ls(m)
lm1 = ll(m)
dbp5 = dbp5 - c(ibar,lm1) - c(m1,jbar)
30 continue
c
bpn(5) = bp(5) + dbp5
delta = db1 + c(ibar,jbar) - rfnk*(bp(2)+bp(5)) +
* rfnk1*((bpn(3)*rfnk2-bp(3)*rfnk)+(bpn(2)+bpn(5)))
return
end
subroutine initrd(c,f,d,nc,nf,nd,pnorm,ls,ll,w1,w2,w3,w4,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
implicit doubleprecision (a-h,o-z)
dimension c(nc,1),f(nf,1),d(nd,1),ls(1),ll(1),w1(1),w2(1),
* w3(1), w4(1)
dimension bp(7),bpn(7),bpb(7)
c initialize recurrence data
c called by the quadratic assignment heuristic hgw.
scsl = 0.d0
sfs = 0.d0
sdl = 0.d0
cmx = 0.d0
fmx = 0.d0
dmx = 0.d0
rfnk = 1.0d0/dble(n1)
rfnk1 = 0.d0
rfnk1 = 1.0d0/dble(n1-1)
rfnk2 = 0.d0
if (n1.gt.2) rfnk2 = 1.0d0/dble(n1-2)
c
do 20 i=1,n1
ls(i) = i
ll(i) = i
c initialize row and col sums
fr = 0.d0
fc = 0.d0
dr = 0.d0
dc = 0.d0
c
do 10 j=1,n1
scsl = scsl + c(i,j)
cmx = max(cmx,abs(c(i,j)))
fr = fr + f(i,j)
fmx = max(fmx,abs(f(i,j)))
fc = fc + f(j,i)
dr = dr + d(i,j)
dmx = max(dmx,abs(d(i,j)))
dc = dc + d(j,i)
10 continue
c
sfs = sfs + fr
sdl = sdl + dr
w1(i) = fr
w3(i) = fc
w2(i) = dr
w4(i) = dc
20 continue
c
bp(1) = 0.d0
bp(2) = 0.d0
bp(3) = sfs*sdl
bp(4) = 0.d0
bp(5) = scsl
bp(6) = sfs
bp(7) = sdl
pnorm = cmx + fmx*dmx
c pnorm is an upper bound on the error in evaluating obj if n1 is
c less than the reciprocal of the machine precision
return
end
subroutine updrd(f,d,nf,nd,ls,ll,w1,w2,w3,w4,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
implicit doubleprecision (a-h,o-z)
dimension f(nf,1),d(nd,1),ls(1),ll(1),w1(1),w2(1),w3(1),w4(1)
dimension bp(7),bpn(7),bpb(7)
c update recurrence data just before k is incremented called by
c the quadratic assignment heuristic hgw. assert: k<=n1-2
kp1 = k + 1
kp11 = ls(kp1)
lkp1 = ll(kp1)
do 10 i=1,n1
w1(i) = w1(i) - f(i,kp11)
w3(i) = w3(i) - f(kp11,i)
w2(i) = w2(i) - d(i,lkp1)
w4(i) = w4(i) - d(lkp1,i)
10 continue
c
bp(1) = bpb(1)
bp(2) = bpb(2)
bp(3) = bpb(3)
bp(4) = bpb(4)
bp(5) = bpb(5)
bp(6) = bpb(6)
bp(7) = bpb(7)
rfnk = rfnk1
rfnk1 = rfnk2
rfnk2 = 0.d0
if (kp1.lt.n1-2) rfnk2 = 1.0d0/dble(n1-kp1-2)
c next value of k is kp1
return
end
doubleprecision function deltx(i, j, c, f, d, nc, nf, nd, loc3n,
+bp,bpn,bpb,rfnk,rfnk1,rfnk2,k,n1,n2,n3)
implicit doubleprecision (a-h,o-z)
dimension c(nc,1), f(nf,1), d(nd,1), loc3n(1)
dimension bp(7),bpn(7),bpb(7)
c called by the quadratic assignment heuristic hgw. returns the change
c (new - old) in the hgw objective function that would be produced if the
c existing assignment pairs (i<->li) and (j<->lj) were replaced by (i<->lj)
c and (j<->li). i and j are in s',li and lj are in l'. f and d are not
c assumed symmetric.
li = loc3n(i)
lj = loc3n(j)
deltx = c(i,lj) - c(i,li) + c(j,li) - c(j,lj) +
* (f(i,j)-f(j,i))*(d(lj,li)-d(li,lj))
c
do 10 m=1,n1
if (m.eq.i) go to 10
if (m.eq.j) go to 10
lm = loc3n(m)
deltx = deltx + (f(i,m)-f(j,m))*(d(lj,lm)-d(li,lm)) +
* (f(m,i)-f(m,j))*(d(lm,lj)-d(lm,li))
10 continue
c
return
end
|