1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
subroutine n2qn1a (simul,n,x,f,ga,scale,acc,
c Copyright INRIA
& df1,mode,niter,nsim,iprint,lp,h,d,w,w1,g,
& binf,bsup,indi,ibloc,iz,izs,rzs,dzs)
implicit double precision (a-h,o-z)
dimension x(n),g(n),scale(n),h(*),d(n),w(n),w1(n)
dimension binf(n),bsup(n),ga(n),izs(*),iz(*)
dimension dzs(*),ibloc(n),indi(n)
real rzs(*)
external simul,fuclid
1001 format (40h n2qn1 termine par voeu de l'utilisateur)
1002 format (25h n2qn1 appel incoherent)
1003 format (23h n2qn1 bornes initiales,
& 45h (0 inactive, -1 binf active, +1 bsup active),/
& (6h n2qn1,17x,5(i5,i3)))
1006 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h f=,d15.7,
&7h binf,i4,9h activee)
1007 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h f=,d15.7,
&7h bsup,i4,9h activee)
1010 format (45h n2qn1 remplace le hessien initial (qui n'est,
& 20h pas defini positif)/27h par une diagonale positive)
1011 format (38h n2qn1 erreur dans la mise a jour de l)
1020 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h f=,d15.7)
1022 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h f=,d15.7,
& 8h borne,i4,12h desactivee)
1024 format (1x)
1025 format (25h n2qn1 probleme dans bfgs)
c
c initialisations
c
alfa=0.7d0
beta=0.1d0
prop=1.d0
nfun=1
iecri=0
itr=0
np=n+1
indic2=1
logic=0
df=df1
if(mode.le.3) go to 1
nr=iz(1)
go to 400
c calcul des bornes actives
1 nr=0
do 14 i=1,n
if(scale(i).gt.0.d0) go to 2
mode=2
write(lp,1002)
go to 15
2 bi=bsup(i)
if(x(i).lt.bi-scale(i)) go to 4
if(x(i).le.bi) go to 3
mode=2
write(lp,1002)
go to 15
3 if(ga(i).ge.0.d0 .and. mode.eq.1) go to 13
ibloc(i)=1
go to 14
4 bi=binf(i)
if(x(i).gt.bi+scale(i)) go to 13
if(x(i).ge.bi) go to 5
mode=2
write(lp,1002)
go to 15
5 if(ga(i).le.0.d0 .and. mode.eq.1) go to 13
ibloc(i)=-1
go to 14
13 nr=nr+1
ibloc(i)=0
14 continue
go to 16
15 niter=1
acc=0.d0
nsim=1
go to 999
c
c le point de depart est-il optimal?
c
16 c=0.d0
dnr=dsqrt(dble(float(nr)))
acc1=acc*dnr
do 100 i=1,n
if(ibloc(i).ne.0) go to 100
gi=ga(i)*scale(i)
c=c+gi*gi
100 continue
c=dsqrt(c)
if(c.gt.acc1) go to 200
call fcomp1(indic2,ibloc,indi,h,ga,d,w,w1,n,nr,ncs,dga,delta,
&prop,acc,scale)
if(ncs.ne.0) go to 102
itr=1
mode=1
go to 900
102 ibloc(ncs)=0
nr=nr+1
go to 200
c
c initialisation du hessien, en fonction de scale et de df1
c
200 go to (300,310,320),mode
300 if(df1.gt.0) go to 301
mode=2
write(lp,1002)
go to 15
301 c=0.d0
do 302 i=1,n
if(ibloc(i).ne.0) go to 302
gi=ga(i)
sc=scale(i)
c=c+gi*gi*sc*sc
302 continue
c=0.5d0*c/df1
do 303 i=1,n
sc=scale(i)
303 w(i)=c/(sc*sc)
nh=n*(n+1)/2
do 304 i=1,nh
304 h(i)=0.d0
c permutation de la matrice h
nr1=nr+1
k1=1
k2=nr+1
do 306 i=1,n
if(ibloc(i).ne.0) go to 305
indi(i)=k1
k1=k1+1
go to 306
305 indi(i)=k2
k2=k2+1
306 continue
mode=1
call fmani1(mode,n,w,d,indi)
if(nr.eq.0) go to 308
k=1
do 307 i=1,nr
h(k)=d(i)
307 k=k+nr1-i
308 if(nr.eq.n) go to 400
k=np*nr-nr1*nr/2+1
do 309 i=nr1,n
h(k)=d(i)
309 k=k+np-i
go to 400
c
c verification de la definie positivite de h
c permutation et factorisation
c
310 call fmc11b(h,n,k)
if(k.ge.n) go to 312
311 if(iprint.ne.0) write(lp,1010)
go to 300
312 nr=n
do 313 i=1,n
313 indi(i)=i
do 314 i=1,n
if(ibloc(i).eq.0) go to 314
nc=i
call fajc1(n,nc,nr,h,w,indi)
314 continue
go to 400
c
c verification que la diagonale est positive
c
320 k=1
do 321 i=1,n
if(h(k).le.0.d0) go to 311
321 k=k+np-i
go to 312
c on est pret a y aller
400 indic2=0
if(iprint.lt.2) go to 410
write (lp,1003) (i,ibloc(i),i=1,n)
write (lp,1024)
410 dnr=dsqrt(dble(float(nr)))
acc1=acc*dnr
c
c iteration
c
500 itr=itr+1
if(itr.ne.1)df=fa-f
fa=f
indic1=0
501 if (itr.le.niter) go to 502
mode=4
go to 900
502 if(iprint.le.2) go to 503
write(lp,1020) itr,nfun,f
503 iecri=iecri+1
if (iecri.ne.-iprint) go to 510
iecri=0
indic=1
call simul(indic,n,x,f,g,izs,rzs,dzs)
c calcul de la direction de recherche
c et du test d arret
510 if(nr.ne.0) go to 511
indic2=1
go to 540
511 mode=1
call fmani1(mode,n,ga,w,indi)
wii=0.d0
do 512 i=1,nr
wi=w(i)
wiii=wi*scale(i)
wii=wii+wiii*wiii
512 w(i)=-wi
wii=dsqrt(wii)
if(wii.gt.acc1) go to 513
indic2=1
go to 540
513 call fmc11e(h,nr,w,w1,nr)
if(nr.eq.n) go to 520
nrp1=nr+1
do 514 i=nrp1,n
514 w(i)=0.d0
c calcul de la derivee directionnelle
520 mode=-1
call fmani1(mode,n,w,d,indi)
dga=0.d0
do 521 i=1,n
521 dga=dga+ga(i)*d(i)
if(dga.lt.0.d0) go to 522
indic2=1
go to 540
522 if(indic1.eq.1) go to 550
c contrainte sortante
540 call fcomp1(indic2,ibloc,indi,h,ga,w,d,g,n,nr,ncs,
& dga,delta,prop,acc,scale)
if(ncs.ne.0) go to 543
if(indic2.ne.1) go to 541
mode=1
go to 900
541 mode=-1
call fmani1(mode,n,w,d,indi)
go to 550
543 if(iprint.lt.2) go to 544
write(lp,1022) itr,nfun,f,ncs
544 indic1=1
logic=6
c mise a jour de ibloc et de h
ibloc(ncs)=0
call fretc1(mode,n,ncs,nr,h,w,indi,indic2)
indic2=0
dnr=dsqrt(dble(float(nr)))
acc1=acc*dnr
if(mode.eq.0) go to 511
mode=7
if(iprint.ne.0) write(lp,1011)
go to 900
c calcul de romax
550 romax=1.d20
nca=0
do 555 i=1,n
di=d(i)
if(di.eq.0.d0) go to 555
if(di.gt.0.d0) go to 552
bi=binf(i)
xi=bi-x(i)
if(-1.d0.ge.di)go to 551
if(xi.le.(di*1.d20)) go to 555
551 rocand=xi/di
i1=-1
go to 554
552 bi=bsup(i)
xi=bi-x(i)
if(di.ge.1.d0) go to 553
if(xi.gt.(di*1.d20)) go to 555
553 rocand=xi/di
i1=1
554 if(rocand.gt.romax) go to 555
nca=i
romax=rocand
isign=i1
555 continue
c romax est-il nul?
if(nca.eq.0) go to 570
if(dabs(romax*d(nca)).le.scale(nca)) go to 560
go to 570
c addition d'une contrainte
560 ibloc(nca)=isign
indic1=1
call fajc1(n,nca,nr,h,w,indi)
if(iprint.ge.2 .and. isign.lt.0) write(lp,1006) itr,nfun,f,nca
if(iprint.ge.2 .and. isign.gt.0) write(lp,1007) itr,nfun,f,nca
dnr=dsqrt(dble(float(nr)))
acc1=acc*dnr
go to 510
c recherche lineaire
570 if((itr.le.n.and.itr.ne.1).
&and.mode.eq.1) go to 571
ro=1.d0
go to 573
571 if(logic.eq.1) go to 573
if(logic.ne.6) go to 572
ro=1.d0
go to 573
572 ro=-2.d0*df/dga
573 roa=ro
ro=dmin1(ro,romax)
romin=0.d0
do 574 i=1,n
z=d(i)
574 romin = dmax1(romin,dabs(z/scale(i)))
romin=1.d0/romin
call nlis0(n,simul,fuclid,x,f,dga,ro,romin,romax,d,g,
&alfa,beta,iprint,lp,logic,nfun,nsim,
&w,izs,rzs,dzs)
if(iprint.gt.3) write(lp,1024)
if(logic.le.1) go to 575
if(logic.eq.6)mode=6
if(logic.eq.4)mode=5
if(logic.eq.5)mode=0
if(logic.eq.7)mode=indic
go to 900
c formule de bfgs
575 theta=1.d0
if(logic.eq.0) go to 580
dgaa=0.d0
do 576 i=1,n
576 dgaa=dgaa+g(i)*d(i)
if (dgaa.lt.alfa*dga) theta=alfa*dga/dgaa
580 mode=1
call fmani1(mode,n,d,w,indi)
ir=-nr
call fmani1(mode,n,ga,d,indi)
do 581 i=1,nr
581 d(i)=-d(i)
call fmlag1(n,nr,h,w,d)
dga=0.d0
do 582 i=1,nr
582 dga=dga-w(i)*d(i)
call fmc11z(h,n,nr,d,1.d0/dga,w1,ir,1,0.d0)
ir=-ir
do 583 i=1,n
gi=g(i)
g(i)=theta*gi-ga(i)
583 ga(i)=gi
call fmani1(mode,n,g,d,indi)
dga=0.d0
do 584 i=1,nr
584 dga=dga+w(i)*d(i)
dga=dga*ro
ro=roa
call fmc11z(h,n,nr,d,1.d0/dga,w1,ir,0,0.d0)
c test du rang de la nouvelle
c sous-matrice active
if(ir.ge.nr) go to 500
mode=3
if(iprint.eq.0) go to 900
write(lp,1025)
c ici,tout est termine
900 if(mode.ne.5.and.mode.ne.3.and.mode.ge.0) go to 910
indic=4
call simul(indic,n,x,f,ga,izs,rzs,dzs)
910 iz(1)=nr
c calcul de la precision obtenue
acc=0.d0
do 920 i=1,n
if(ibloc(i).ne.0) go to 920
gi=ga(i)
acc=acc+gi*gi
920 continue
if(dnr.eq.0.d0) go to 921
acc=dsqrt(acc)/dnr
921 niter=itr
nsim=nfun
999 return
end
|