File: n2qn1a.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (369 lines) | stat: -rw-r--r-- 9,121 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
      subroutine n2qn1a (simul,n,x,f,ga,scale,acc,
c     Copyright INRIA
      & df1,mode,niter,nsim,iprint,lp,h,d,w,w1,g,
     & binf,bsup,indi,ibloc,iz,izs,rzs,dzs)
      implicit double precision (a-h,o-z)
      dimension x(n),g(n),scale(n),h(*),d(n),w(n),w1(n)
      dimension binf(n),bsup(n),ga(n),izs(*),iz(*)
      dimension dzs(*),ibloc(n),indi(n)
      real rzs(*)
      external simul,fuclid
 1001 format (40h n2qn1 termine par voeu de l'utilisateur)
 1002 format (25h n2qn1   appel incoherent)
 1003 format (23h n2qn1 bornes initiales,
     & 45h (0 inactive, -1 binf active, +1 bsup active),/
     & (6h n2qn1,17x,5(i5,i3)))
 1006 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h   f=,d15.7,
     &7h   binf,i4,9h  activee)
 1007 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h   f=,d15.7,
     &7h   bsup,i4,9h  activee)
 1010 format (45h n2qn1 remplace le hessien initial (qui n'est,
     & 20h pas defini positif)/27h par une diagonale positive)
 1011 format (38h n2qn1 erreur dans la mise a jour de l)
 1020 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h   f=,d15.7)
 1022 format (6h n2qn1,i4,6h iters,i6,7h simuls,5h   f=,d15.7,
     & 8h   borne,i4,12h  desactivee)
 1024 format (1x)
 1025 format (25h n2qn1 probleme dans bfgs)
c
c      initialisations
c
      alfa=0.7d0
      beta=0.1d0
      prop=1.d0
      nfun=1
      iecri=0
      itr=0
      np=n+1
      indic2=1
      logic=0
      df=df1
      if(mode.le.3) go to 1
      nr=iz(1)
      go to 400
c                calcul des bornes actives
    1 nr=0
      do 14 i=1,n
      if(scale(i).gt.0.d0) go to 2
      mode=2
      write(lp,1002)
      go to 15
    2 bi=bsup(i)
      if(x(i).lt.bi-scale(i)) go to 4
      if(x(i).le.bi) go to 3
      mode=2
      write(lp,1002)
      go to 15
    3 if(ga(i).ge.0.d0 .and. mode.eq.1) go to 13
      ibloc(i)=1
      go to 14
    4 bi=binf(i)
      if(x(i).gt.bi+scale(i)) go to 13
      if(x(i).ge.bi) go to 5
      mode=2
      write(lp,1002)
      go to 15
    5 if(ga(i).le.0.d0 .and. mode.eq.1) go to 13
      ibloc(i)=-1
      go to 14
   13 nr=nr+1
      ibloc(i)=0
   14 continue
      go to 16
   15 niter=1
      acc=0.d0
      nsim=1
      go to 999
c
c      le point de depart est-il optimal?
c
   16 c=0.d0
      dnr=dsqrt(dble(float(nr)))
      acc1=acc*dnr
      do 100 i=1,n
      if(ibloc(i).ne.0)  go to 100
      gi=ga(i)*scale(i)
      c=c+gi*gi
  100 continue
      c=dsqrt(c)
      if(c.gt.acc1) go to 200
      call fcomp1(indic2,ibloc,indi,h,ga,d,w,w1,n,nr,ncs,dga,delta,
     &prop,acc,scale)
      if(ncs.ne.0) go to 102
      itr=1
      mode=1
      go to 900
  102 ibloc(ncs)=0
      nr=nr+1
      go to 200
c
c         initialisation du hessien, en fonction de scale et de df1
c
  200 go to (300,310,320),mode
  300 if(df1.gt.0) go to 301
      mode=2
      write(lp,1002)
      go to 15
  301 c=0.d0
      do 302 i=1,n
      if(ibloc(i).ne.0) go to 302
      gi=ga(i)
      sc=scale(i)
      c=c+gi*gi*sc*sc
  302 continue
      c=0.5d0*c/df1
      do 303 i=1,n
      sc=scale(i)
  303 w(i)=c/(sc*sc)
      nh=n*(n+1)/2
      do 304 i=1,nh
  304 h(i)=0.d0
c      permutation de la matrice h
      nr1=nr+1
      k1=1
      k2=nr+1
      do 306 i=1,n
      if(ibloc(i).ne.0) go to 305
      indi(i)=k1
      k1=k1+1
      go to 306
  305 indi(i)=k2
      k2=k2+1
  306 continue
      mode=1
      call fmani1(mode,n,w,d,indi)
      if(nr.eq.0) go to 308
      k=1
      do 307 i=1,nr
      h(k)=d(i)
  307 k=k+nr1-i
  308 if(nr.eq.n) go to 400
      k=np*nr-nr1*nr/2+1
      do 309 i=nr1,n
      h(k)=d(i)
  309 k=k+np-i
      go to 400
c
c      verification de la definie positivite de h
c      permutation et factorisation
c
  310 call fmc11b(h,n,k)
      if(k.ge.n) go to 312
  311 if(iprint.ne.0) write(lp,1010)
      go to 300
  312 nr=n
      do 313 i=1,n
  313 indi(i)=i
      do 314 i=1,n
      if(ibloc(i).eq.0) go to 314
      nc=i
      call fajc1(n,nc,nr,h,w,indi)
  314 continue
      go to 400
c
c      verification que la diagonale est positive
c
  320 k=1
      do 321 i=1,n
      if(h(k).le.0.d0) go to 311
  321 k=k+np-i
      go to 312
c                  on est pret a y aller
  400 indic2=0
      if(iprint.lt.2) go to 410
      write (lp,1003) (i,ibloc(i),i=1,n)
      write (lp,1024)
  410 dnr=dsqrt(dble(float(nr)))
      acc1=acc*dnr
c
c                   iteration
c
  500 itr=itr+1
      if(itr.ne.1)df=fa-f
      fa=f
      indic1=0
  501 if (itr.le.niter) go to 502
      mode=4
      go to 900
  502 if(iprint.le.2) go to 503
      write(lp,1020) itr,nfun,f
  503 iecri=iecri+1
      if (iecri.ne.-iprint) go to 510
      iecri=0
      indic=1
      call simul(indic,n,x,f,g,izs,rzs,dzs)
c               calcul de la direction de recherche
c               et du test d arret
  510 if(nr.ne.0) go to 511
      indic2=1
      go to 540
  511 mode=1
      call fmani1(mode,n,ga,w,indi)
      wii=0.d0
      do 512 i=1,nr
      wi=w(i)
      wiii=wi*scale(i)
      wii=wii+wiii*wiii
  512 w(i)=-wi
      wii=dsqrt(wii)
      if(wii.gt.acc1) go to 513
      indic2=1
      go to 540
  513 call fmc11e(h,nr,w,w1,nr)
      if(nr.eq.n) go to 520
      nrp1=nr+1
      do 514 i=nrp1,n
  514 w(i)=0.d0
c           calcul de la derivee directionnelle
  520 mode=-1
      call fmani1(mode,n,w,d,indi)
      dga=0.d0
      do 521 i=1,n
  521 dga=dga+ga(i)*d(i)
      if(dga.lt.0.d0) go to 522
      indic2=1
      go to 540
  522 if(indic1.eq.1) go to 550
c               contrainte sortante
  540 call fcomp1(indic2,ibloc,indi,h,ga,w,d,g,n,nr,ncs,
     & dga,delta,prop,acc,scale)
      if(ncs.ne.0) go to 543
      if(indic2.ne.1) go to 541
      mode=1
      go to 900
  541 mode=-1
      call fmani1(mode,n,w,d,indi)
      go to 550
  543 if(iprint.lt.2) go to 544
      write(lp,1022) itr,nfun,f,ncs
  544 indic1=1
      logic=6
c                mise a jour de ibloc et de h
      ibloc(ncs)=0
      call fretc1(mode,n,ncs,nr,h,w,indi,indic2)
      indic2=0
      dnr=dsqrt(dble(float(nr)))
      acc1=acc*dnr
      if(mode.eq.0) go to 511
      mode=7
      if(iprint.ne.0) write(lp,1011)
      go to 900
c                calcul de romax
  550 romax=1.d20
      nca=0
      do 555 i=1,n
      di=d(i)
      if(di.eq.0.d0) go to 555
      if(di.gt.0.d0) go to 552
      bi=binf(i)
      xi=bi-x(i)
      if(-1.d0.ge.di)go to 551
      if(xi.le.(di*1.d20)) go to 555
  551 rocand=xi/di
      i1=-1
      go to 554
  552 bi=bsup(i)
      xi=bi-x(i)
      if(di.ge.1.d0) go to 553
      if(xi.gt.(di*1.d20)) go to 555
  553 rocand=xi/di
      i1=1
  554 if(rocand.gt.romax) go to 555
      nca=i
      romax=rocand
      isign=i1
  555 continue
c                romax est-il nul?
      if(nca.eq.0) go to 570
      if(dabs(romax*d(nca)).le.scale(nca)) go to 560
      go to 570
c               addition d'une contrainte
  560 ibloc(nca)=isign
      indic1=1
      call fajc1(n,nca,nr,h,w,indi)
      if(iprint.ge.2 .and. isign.lt.0) write(lp,1006) itr,nfun,f,nca
      if(iprint.ge.2 .and. isign.gt.0) write(lp,1007) itr,nfun,f,nca
      dnr=dsqrt(dble(float(nr)))
      acc1=acc*dnr
      go to 510
c                recherche lineaire
  570 if((itr.le.n.and.itr.ne.1).
     &and.mode.eq.1) go to 571
      ro=1.d0
      go to 573
  571 if(logic.eq.1) go to 573
      if(logic.ne.6) go to 572
      ro=1.d0
      go to 573
  572 ro=-2.d0*df/dga
  573 roa=ro
      ro=dmin1(ro,romax)
      romin=0.d0
      do 574 i=1,n
      z=d(i)
  574 romin = dmax1(romin,dabs(z/scale(i)))
      romin=1.d0/romin
      call nlis0(n,simul,fuclid,x,f,dga,ro,romin,romax,d,g,
     &alfa,beta,iprint,lp,logic,nfun,nsim,
     &w,izs,rzs,dzs)
      if(iprint.gt.3) write(lp,1024)
      if(logic.le.1) go to 575
      if(logic.eq.6)mode=6
      if(logic.eq.4)mode=5
      if(logic.eq.5)mode=0
      if(logic.eq.7)mode=indic
      go to 900
c               formule de bfgs
  575 theta=1.d0
      if(logic.eq.0) go to 580
      dgaa=0.d0
      do 576 i=1,n
  576 dgaa=dgaa+g(i)*d(i)
      if (dgaa.lt.alfa*dga) theta=alfa*dga/dgaa
  580 mode=1
      call fmani1(mode,n,d,w,indi)
      ir=-nr
      call fmani1(mode,n,ga,d,indi)
      do 581 i=1,nr
  581 d(i)=-d(i)
      call fmlag1(n,nr,h,w,d)
      dga=0.d0
      do 582 i=1,nr
  582 dga=dga-w(i)*d(i)
      call fmc11z(h,n,nr,d,1.d0/dga,w1,ir,1,0.d0)
      ir=-ir
      do 583 i=1,n
      gi=g(i)
      g(i)=theta*gi-ga(i)
  583 ga(i)=gi
      call fmani1(mode,n,g,d,indi)
      dga=0.d0
      do 584 i=1,nr
  584 dga=dga+w(i)*d(i)
      dga=dga*ro
      ro=roa
      call fmc11z(h,n,nr,d,1.d0/dga,w1,ir,0,0.d0)
c                test du rang de la nouvelle
c                sous-matrice active
      if(ir.ge.nr) go to 500
      mode=3
      if(iprint.eq.0) go to 900
      write(lp,1025)
c                ici,tout est termine
  900 if(mode.ne.5.and.mode.ne.3.and.mode.ge.0) go to 910
      indic=4
      call simul(indic,n,x,f,ga,izs,rzs,dzs)
  910 iz(1)=nr
c           calcul de la precision obtenue
      acc=0.d0
      do 920 i=1,n
      if(ibloc(i).ne.0) go to 920
      gi=ga(i)
      acc=acc+gi*gi
  920 continue
      if(dnr.eq.0.d0) go to 921
      acc=dsqrt(acc)/dnr
  921 niter=itr
      nsim=nfun
  999 return
      end