File: ql0001.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (1166 lines) | stat: -rw-r--r-- 31,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
      SUBROUTINE QL0001(M,ME,MMAX,N,NMAX,MNN,C,D,A,B,XL,XU,
     1           X,U,IOUT,IFAIL,IPRINT,WAR,LWAR,IWAR,LIWAR,EPS)
c
cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
c                     !!!! NOTICE !!!!
c
c 1. The routines contained in this file are due to Prof. K.Schittkowski
c    of the University of Bayreuth, Germany (modification of routines
c    due to Prof. MJD Powell at the University of Cambridge).  They can
c    be freely distributed.
c
c 2. A minor modification was performed at the University of Maryland. 
c    It is marked in the code by "c umd".
c
c                                      A.L. Tits and J.L. Zhou
c                                      University of Maryland
C
C***********************************************************************
C
C
C             SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS
C
C
C
C   QL0001 SOLVES THE QUADRATIC PROGRAMMING PROBLEM
C
C   MINIMIZE        .5*X'*C*X + D'*X
C   SUBJECT TO      A(J)*X  +  B(J)   =  0  ,  J=1,...,ME
C                   A(J)*X  +  B(J)  >=  0  ,  J=ME+1,...,M
C                   XL  <=  X  <=  XU
C   
C   HERE C MUST BE AN N BY N SYMMETRIC AND POSITIVE MATRIX, D AN N-DIMENSIONAL
C   VECTOR, A AN M BY N MATRIX AND B AN M-DIMENSIONAL VECTOR. THE ABOVE 
C   SITUATION IS INDICATED BY IWAR(1)=1. ALTERNATIVELY, I.E. IF IWAR(1)=0,
C   THE OBJECTIVE FUNCTION MATRIX CAN ALSO BE PROVIDED IN FACTORIZED FORM.
C   IN THIS CASE, C IS AN UPPER TRIANGULAR MATRIX.
C
C   THE SUBROUTINE REORGANIZES SOME DATA SO THAT THE PROBLEM CAN BE SOLVED
C   BY A MODIFICATION OF AN ALGORITHM PROPOSED BY POWELL (1983).
C
C
C   USAGE:
C
C      QL0001(M,ME,MMAX,N,NMAX,MNN,C,D,A,B,XL,XU,X,U,IOUT,IFAIL,IPRINT,
C             WAR,LWAR,IWAR,LIWAR,EPS)
C
C
C   DEFINITION OF THE PARAMETERS:
C
C   M :        TOTAL NUMBER OF CONSTRAINTS.
C   ME :       NUMBER OF EQUALITY CONSTRAINTS.
C   MMAX :     ROW DIMENSION OF A. MMAX MUST BE AT LEAST ONE AND GREATER
C              THAN M.
C   N :        NUMBER OF VARIABLES.
C   NMAX :     ROW DIMENSION OF C. NMAX MUST BE GREATER OR EQUAL TO N.
C   MNN :      MUST BE EQUAL TO M + N + N.
C   C(NMAX,NMAX): OBJECTIVE FUNCTION MATRIX WHICH SHOULD BE SYMMETRIC AND
C              POSITIVE DEFINITE. IF IWAR(1) = 0, C IS SUPPOSED TO BE THE
C              CHOLESKEY-FACTOR OF ANOTHER MATRIX, I.E. C IS UPPER
C              TRIANGULAR.
C   D(NMAX) :  CONTAINS THE CONSTANT VECTOR OF THE OBJECTIVE FUNCTION.
C   A(MMAX,NMAX): CONTAINS THE DATA MATRIX OF THE LINEAR CONSTRAINTS.
C   B(MMAX) :  CONTAINS THE CONSTANT DATA OF THE LINEAR CONSTRAINTS.
C   XL(N),XU(N): CONTAIN THE LOWER AND UPPER BOUNDS FOR THE VARIABLES.
C   X(N) :     ON RETURN, X CONTAINS THE OPTIMAL SOLUTION VECTOR.
C   U(MNN) :   ON RETURN, U CONTAINS THE LAGRANGE MULTIPLIERS. THE FIRST
C              M POSITIONS ARE RESERVED FOR THE MULTIPLIERS OF THE M
C              LINEAR CONSTRAINTS AND THE SUBSEQUENT ONES FOR THE 
C              MULTIPLIERS OF THE LOWER AND UPPER BOUNDS. ON SUCCESSFUL
C              TERMINATION, ALL VALUES OF U WITH RESPECT TO INEQUALITIES 
C              AND BOUNDS SHOULD BE GREATER OR EQUAL TO ZERO.
C   IOUT :     INTEGER INDICATING THE DESIRED OUTPUT UNIT NUMBER, I.E.
C              ALL WRITE-STATEMENTS START WITH 'WRITE(IOUT,... '.
C   IFAIL :    SHOWS THE TERMINATION REASON.
C      IFAIL = 0 :   SUCCESSFUL RETURN.
C      IFAIL = 1 :   TOO MANY ITERATIONS (MORE THAN 40*(N+M)).
C      IFAIL = 2 :   ACCURACY INSUFFICIENT TO SATISFY CONVERGENCE
C                    CRITERION.
C      IFAIL = 5 :   LENGTH OF A WORKING ARRAY IS TOO SHORT.
C      IFAIL > 10 :  THE CONSTRAINTS ARE INCONSISTENT.
C   IPRINT :   OUTPUT CONTROL.
C      IPRINT = 0 :  NO OUTPUT OF QL0001.
C      IPRINT > 0 :  BRIEF OUTPUT IN ERROR CASES.
C   WAR(LWAR) : REAL WORKING ARRAY. THE LENGTH LWAR SHOULD BE GRATER THAN
C               3*NMAX*NMAX/2 + 10*NMAX + 2*MMAX.
C   IWAR(LIWAR): INTEGER WORKING ARRAY. THE LENGTH LIWAR SHOULD BE AT
C              LEAST N.
C              IF IWAR(1)=0 INITIALLY, THEN THE CHOLESKY DECOMPOSITION
C              WHICH IS REQUIRED BY THE DUAL ALGORITHM TO GET THE FIRST
C              UNCONSTRAINED MINIMUM OF THE OBJECTIVE FUNCTION, IS
C              PERFORMED INTERNALLY. OTHERWISE, I.E. IF IWAR(1)=1, THEN
C              IT IS ASSUMED THAT THE USER PROVIDES THE INITIAL FAC-
C              TORIZATION BY HIMSELF AND STORES IT IN THE UPPER TRIAN-
C              GULAR PART OF THE ARRAY C.
C
C   EPS DEFINES A GUESS FOR THE UNDERLYING MACHINE PRECISION.
C
C
C   AUTHOR:    K. SCHITTKOWSKI,
C              MATHEMATISCHES INSTITUT,
C              UNIVERSITAET BAYREUTH,
C              8580 BAYREUTH,
C              GERMANY, F.R.
C
C
C   VERSION:   1.4  (MARCH, 1987)  
C
C
C*********************************************************************
C
C
      INTEGER NMAX,MMAX,N,MNN,LWAR,LIWAR
      DIMENSION C(NMAX,NMAX),D(NMAX),A(MMAX,NMAX),B(MMAX),
     1      XL(N),XU(N),X(N),U(MNN),WAR(LWAR),IWAR(LIWAR)
      DOUBLE PRECISION C,D,A,B,X,XL,XU,U,WAR,DIAG,ZERO,
     1      EPS,QPEPS,TEN
      INTEGER M,ME,IOUT,IFAIL,IPRINT,IWAR,INW1,INW2,IN,J,LW,MN,I,         
     1      IDIAG,INFO,NACT,MAXIT
      LOGICAL LQL
C
C     INTRINSIC FUNCTIONS:  DSQRT
C
C
C     CONSTANT DATA
C
c#################################################################
c

      if(c(nmax,nmax).eq.0.d0) c(nmax,nmax)=eps
c
c umd
c  This prevents a subsequent more major modification of the Hessian
c  matrix in the important case when a minmax problem (yielding a 
c  singular Hessian matrix) is being solved.
c                                 ----UMCP, April 1991, Jian L. Zhou
c#################################################################
c
      LQL=.FALSE.
      IF (IWAR(1).EQ.1) LQL=.TRUE.
      ZERO=0.0D+0
      TEN=1.D+1
      MAXIT=40*(M+N)
      QPEPS=EPS
      INW1=1
      INW2=INW1+MMAX
C
C     PREPARE PROBLEM DATA FOR EXECUTION
C
      IF (M.LE.0) GOTO 20
      IN=INW1
      DO 10 J=1,M
      WAR(IN)=-B(J)
   10 IN=IN+1
   20 LW=3*NMAX*NMAX/2 + 10*NMAX + M
      IF ((INW2+LW).GT.LWAR) GOTO 80
      IF (LIWAR.LT.N) GOTO 81
      IF (MNN.LT.M+N+N) GOTO 82
      MN=M+N
C
C     CALL OF QL0002
C
      CALL QL0002(N,M,ME,MMAX,MN,MNN,NMAX,LQL,A,WAR(INW1),
     1    D,C,XL,XU,X,NACT,IWAR,MAXIT,QPEPS,INFO,DIAG,
     2    WAR(INW2),LW)
C
C     TEST OF MATRIX CORRECTIONS
C
      IFAIL=0
      IF (INFO.EQ.1) GOTO 40
      IF (INFO.EQ.2) GOTO 90
      IDIAG=0
      IF ((DIAG.GT.ZERO).AND.(DIAG.LT.1000.0)) IDIAG=DIAG
      IF ((IPRINT.GT.0).AND.(IDIAG.GT.0))
     1   WRITE(IOUT,1000) IDIAG
      IF (INFO .LT. 0) GOTO  70
C
C     REORDER MULTIPLIER
C
      DO  50 J=1,MNN
   50 U(J)=ZERO
      IN=INW2-1
      IF (NACT.EQ.0) GOTO 30
      DO  60 I=1,NACT
      J=IWAR(I)
      U(J)=WAR(IN+I)
   60 CONTINUE
   30 CONTINUE
      RETURN
C
C     ERROR MESSAGES
C
   70 IFAIL=-INFO+10
      IF ((IPRINT.GT.0).AND.(NACT.GT.0))
     1     WRITE(IOUT,1100) -INFO,(IWAR(I),I=1,NACT)
      RETURN
   80 IFAIL=5
      IF (IPRINT .GT. 0) WRITE(IOUT,1200)
      RETURN
   81 IFAIL=5
      IF (IPRINT .GT. 0) WRITE(IOUT,1210)
      RETURN
   82 IFAIL=5
      IF (IPRINT .GT. 0) WRITE(IOUT,1220)
      RETURN
   40 IFAIL=1
      IF (IPRINT.GT.0) WRITE(IOUT,1300) MAXIT
      RETURN
   90 IFAIL=2
      IF (IPRINT.GT.0) WRITE(IOUT,1400) 
      RETURN
C
C     FORMAT-INSTRUCTIONS
C
 1000 FORMAT(/8X,28H***QL: MATRIX G WAS ENLARGED,I3,
     1        20H-TIMES BY UNITMATRIX)
 1100 FORMAT(/8X,18H***QL: CONSTRAINT ,I5,
     1        19H NOT CONSISTENT TO ,/,(10X,10I5))
 1200 FORMAT(/8X,21H***QL: LWAR TOO SMALL)
 1210 FORMAT(/8X,22H***QL: LIWAR TOO SMALL)
 1220 FORMAT(/8X,20H***QL: MNN TOO SMALL)
 1300 FORMAT(/8X,37H***QL: TOO MANY ITERATIONS (MORE THAN,I6,1H))
 1400 FORMAT(/8X,50H***QL: ACCURACY INSUFFICIENT TO ATTAIN CONVERGENCE) 
      END
C
      SUBROUTINE QL0002(N,M,MEQ,MMAX,MN,MNN,NMAX,LQL,A,B,GRAD,G,
     1      XL,XU,X,NACT,IACT,MAXIT,VSMALL,INFO,DIAG,W,LW)
C
C**************************************************************************
C
C
C   THIS SUBROUTINE SOLVES THE QUADRATIC PROGRAMMING PROBLEM 
C
C       MINIMIZE      GRAD'*X  +  0.5 * X*G*X
C       SUBJECT TO    A(K)*X  =  B(K)   K=1,2,...,MEQ,
C                     A(K)*X >=  B(K)   K=MEQ+1,...,M,
C                     XL  <=  X  <=  XU
C
C   THE QUADRATIC PROGRAMMING METHOD PROCEEDS FROM AN INITIAL CHOLESKY-
C   DECOMPOSITION OF THE OBJECTIVE FUNCTION MATRIX, TO CALCULATE THE
C   UNIQUELY DETERMINED MINIMIZER OF THE UNCONSTRAINED PROBLEM. 
C   SUCCESSIVELY ALL VIOLATED CONSTRAINTS ARE ADDED TO A WORKING SET 
C   AND A MINIMIZER OF THE OBJECTIVE FUNCTION SUBJECT TO ALL CONSTRAINTS 
C   IN THIS WORKING SET IS COMPUTED. IT IS POSSIBLE THAT CONSTRAINTS
C   HAVE TO LEAVE THE WORKING SET.
C
C
C   DESCRIPTION OF PARAMETERS:    
C
C     N        : IS THE NUMBER OF VARIABLES.
C     M        : TOTAL NUMBER OF CONSTRAINTS.
C     MEQ      : NUMBER OF EQUALITY CONTRAINTS.
C     MMAX     : ROW DIMENSION OF A, DIMENSION OF B. MMAX MUST BE AT
C                LEAST ONE AND GREATER OR EQUAL TO M.
C     MN       : MUST BE EQUAL M + N.
C     MNN      : MUST BE EQUAL M + N + N.
C     NMAX     : ROW DIEMSION OF G. MUST BE AT LEAST N.
C     LQL      : DETERMINES INITIAL DECOMPOSITION.
C        LQL = .FALSE.  : THE UPPER TRIANGULAR PART OF THE MATRIX G
C                         CONTAINS INITIALLY THE CHOLESKY-FACTOR OF A SUITABLE 
C                         DECOMPOSITION.
C        LQL = .TRUE.   : THE INITIAL CHOLESKY-FACTORISATION OF G IS TO BE
C                         PERFORMED BY THE ALGORITHM.
C     A(MMAX,NMAX) : A IS A MATRIX WHOSE COLUMNS ARE THE CONSTRAINTS NORMALS.
C     B(MMAX)  : CONTAINS THE RIGHT HAND SIDES OF THE CONSTRAINTS.
C     GRAD(N)  : CONTAINS THE OBJECTIVE FUNCTION VECTOR GRAD.
C     G(NMAX,N): CONTAINS THE SYMMETRIC OBJECTIVE FUNCTION MATRIX.
C     XL(N), XU(N): CONTAIN THE LOWER AND UPPER BOUNDS FOR X.
C     X(N)     : VECTOR OF VARIABLES.
C     NACT     : FINAL NUMBER OF ACTIVE CONSTRAINTS.
C     IACT(K) (K=1,2,...,NACT): INDICES OF THE FINAL ACTIVE CONSTRAINTS.
C     INFO     : REASON FOR THE RETURN FROM THE SUBROUTINE.
C         INFO = 0 : CALCULATION WAS TERMINATED SUCCESSFULLY.
C         INFO = 1 : MAXIMUM NUMBER OF ITERATIONS ATTAINED.
C         INFO = 2 : ACCURACY IS INSUFFICIENT TO MAINTAIN INCREASING
C                    FUNCTION VALUES.
C         INFO < 0 : THE CONSTRAINT WITH INDEX ABS(INFO) AND THE CON-
C                    STRAINTS WHOSE INDICES ARE IACT(K), K=1,2,...,NACT,
C                    ARE INCONSISTENT.
C     MAXIT    : MAXIMUM NUMBER OF ITERATIONS.
C     VSMALL   : REQUIRED ACCURACY TO BE ACHIEVED (E.G. IN THE ORDER OF THE 
C                MACHINE PRECISION FOR SMALL AND WELL-CONDITIONED PROBLEMS).
C     DIAG     : ON RETURN DIAG IS EQUAL TO THE MULTIPLE OF THE UNIT MATRIX
C                THAT WAS ADDED TO G TO ACHIEVE POSITIVE DEFINITENESS.
C     W(LW)    : THE ELEMENTS OF W(.) ARE USED FOR WORKING SPACE. THE LENGTH
C                OF W MUST NOT BE LESS THAN (1.5*NMAX*NMAX + 10*NMAX + M).
C                WHEN INFO = 0 ON RETURN, THE LAGRANGE MULTIPLIERS OF THE
C                FINAL ACTIVE CONSTRAINTS ARE HELD IN W(K), K=1,2,...,NACT.
C   THE VALUES OF N, M, MEQ, MMAX, MN, MNN AND NMAX AND THE ELEMENTS OF
C   A, B, GRAD AND G ARE NOT ALTERED.
C
C   THE FOLLOWING INTEGERS ARE USED TO PARTITION W:
C     THE FIRST N ELEMENTS OF W HOLD LAGRANGE MULTIPLIER ESTIMATES.
C     W(IWZ+I+(N-1)*J) HOLDS THE MATRIX ELEMENT Z(I,J).
C     W(IWR+I+0.5*J*(J-1)) HOLDS THE UPPER TRIANGULAR MATRIX
C       ELEMENT R(I,J). THE SUBSEQUENT N COMPONENTS OF W MAY BE
C       TREATED AS AN EXTRA COLUMN OF R(.,.).
C     W(IWW-N+I) (I=1,2,...,N) ARE USED FOR TEMPORARY STORAGE.
C     W(IWW+I) (I=1,2,...,N) ARE USED FOR TEMPORARY STORAGE.
C     W(IWD+I) (I=1,2,...,N) HOLDS G(I,I) DURING THE CALCULATION.
C     W(IWX+I) (I=1,2,...,N) HOLDS VARIABLES THAT WILL BE USED TO
C       TEST THAT THE ITERATIONS INCREASE THE OBJECTIVE FUNCTION.
C     W(IWA+K) (K=1,2,...,M) USUALLY HOLDS THE RECIPROCAL OF THE
C       LENGTH OF THE K-TH CONSTRAINT, BUT ITS SIGN INDICATES
C       WHETHER THE CONSTRAINT IS ACTIVE.
C
C   
C   AUTHOR:    K. SCHITTKOWSKI,
C              MATHEMATISCHES INSTITUT,
C              UNIVERSITAET BAYREUTH,
C              8580 BAYREUTH,
C              GERMANY, F.R.
C
C   AUTHOR OF ORIGINAL VERSION:
C              M.J.D. POWELL, DAMTP,
C              UNIVERSITY OF CAMBRIDGE, SILVER STREET
C              CAMBRIDGE,
C              ENGLAND
C
C
C   REFERENCE: M.J.D. POWELL: ZQPCVX, A FORTRAN SUBROUTINE FOR CONVEX
C              PROGRAMMING, REPORT DAMTP/1983/NA17, UNIVERSITY OF
C              CAMBRIDGE, ENGLAND, 1983.
C
C
C   VERSION :  2.0 (MARCH, 1987)
C
C
C*************************************************************************
C
      INTEGER MMAX,NMAX,N,LW
      DIMENSION A(MMAX,NMAX),B(MMAX),GRAD(N),G(NMAX,N),X(N),IACT(N),
     1      W(LW),XL(N),XU(N)
      INTEGER M,MEQ,MN,MNN,NACT,IACT,INFO,MAXIT
      DOUBLE PRECISION CVMAX,DIAG,DIAGR,FDIFF,FDIFFA,GA,GB,PARINC,PARNEW       
     1      ,RATIO,RES,STEP,SUM,SUMX,SUMY,SUMA,SUMB,SUMC,TEMP,TEMPA,
     2       VSMALL,XMAG,XMAGR,ZERO,ONE,TWO,ONHA,VFACT
      DOUBLE PRECISION A,B,G,GRAD,W,X,XL,XU
C
C   INTRINSIC FUNCTIONS:   DMAX1,DSQRT,DABS,DMIN1
C
      INTEGER IWZ,IWR,IWW,IWD,IWA,IFINC,KFINC,K,I,IA,ID,II,IR,IRA,
     1     IRB,J,NM,IZ,IZA,ITERC,ITREF,JFINC,IFLAG,IWS,IS,K1,IW,KK,IP,
     2     IPP,IL,IU,JU,KFLAG,LFLAG,JFLAG,KDROP,NU,MFLAG,KNEXT,IX,IWX,
     3     IWY,IY,JL
      INTEGER NFLAG,IWWN
      LOGICAL LQL,LOWER
C
C   INITIAL ADDRESSES
C
      IWZ=NMAX
      IWR=IWZ+NMAX*NMAX
      IWW=IWR+(NMAX*(NMAX+3))/2
      IWD=IWW+NMAX
      IWX=IWD+NMAX
      IWA=IWX+NMAX
C
C     SET SOME CONSTANTS.
C
      ZERO=0.D+0
      ONE=1.D+0
      TWO=2.D+0
      ONHA=1.5D+0
      VFACT=1.D+0
C
C     SET SOME PARAMETERS.
C     NUMBER LESS THAN VSMALL ARE ASSUMED TO BE NEGLIGIBLE.
C     THE MULTIPLE OF I THAT IS ADDED TO G IS AT MOST DIAGR TIMES
C       THE LEAST MULTIPLE OF I THAT GIVES POSITIVE DEFINITENESS.
C     X IS RE-INITIALISED IF ITS MAGNITUDE IS REDUCED BY THE
C       FACTOR XMAGR.
C     A CHECK IS MADE FOR AN INCREASE IN F EVERY IFINC ITERATIONS,
C       AFTER KFINC ITERATIONS ARE COMPLETED.
C
      DIAGR=TWO
      XMAGR=1.0D-2
      IFINC=3
      KFINC=MAX0(10,N)
C
C     FIND THE RECIPROCALS OF THE LENGTHS OF THE CONSTRAINT NORMALS.
C     RETURN IF A CONSTRAINT IS INFEASIBLE DUE TO A ZERO NORMAL.
C
      NACT=0
      IF (M .LE. 0) GOTO 45
      DO 40 K=1,M
      SUM=ZERO
      DO 10 I=1,N
   10 SUM=SUM+A(K,I)**2
      IF (SUM .GT. ZERO) GOTO 20
      IF (B(K) .EQ. ZERO) GOTO 30
      INFO=-K
      IF (K .LE. MEQ) GOTO 730
      IF (B(K)) 30,30,730
   20 SUM=ONE/DSQRT(SUM)
   30 IA=IWA+K
   40 W(IA)=SUM
   45 DO 50 K=1,N
      IA=IWA+M+K
   50 W(IA)=ONE
C
C     IF NECESSARY INCREASE THE DIAGONAL ELEMENTS OF G.
C
      IF (.NOT. LQL) GOTO 165
      DIAG=ZERO
      DO 60 I=1,N
      ID=IWD+I
      W(ID)=G(I,I)
      DIAG=DMAX1(DIAG,VSMALL-W(ID))
      IF (I .EQ. N) GOTO 60
      II=I+1
      DO 55 J=II,N
      GA=-DMIN1(W(ID),G(J,J))
      GB=DABS(W(ID)-G(J,J))+DABS(G(I,J))
      IF (GB .GT. ZERO) GA=GA+G(I,J)**2/GB
   55 DIAG=DMAX1(DIAG,GA)
   60 CONTINUE
      IF (DIAG .LE. ZERO) GOTO 90
   70 DIAG=DIAGR*DIAG
      DO 80 I=1,N
      ID=IWD+I
   80 G(I,I)=DIAG+W(ID)
C
C     FORM THE CHOLESKY FACTORISATION OF G. THE TRANSPOSE
C     OF THE FACTOR WILL BE PLACED IN THE R-PARTITION OF W.
C
   90 IR=IWR
      DO 130 J=1,N
      IRA=IWR
      IRB=IR+1
      DO 120 I=1,J
      TEMP=G(I,J)
      IF (I .EQ. 1) GOTO 110
      DO 100 K=IRB,IR
      IRA=IRA+1
  100 TEMP=TEMP-W(K)*W(IRA)
  110 IR=IR+1
      IRA=IRA+1
      IF (I .LT. J) W(IR)=TEMP/W(IRA)
  120 CONTINUE
      IF (TEMP .LT. VSMALL) GOTO 140
  130 W(IR)=DSQRT(TEMP)
      GOTO 170
C
C     INCREASE FURTHER THE DIAGONAL ELEMENT OF G.
C
  140 W(J)=ONE
      SUMX=ONE
      K=J
  150 SUM=ZERO
      IRA=IR-1
      DO 160 I=K,J
      SUM=SUM-W(IRA)*W(I)
  160 IRA=IRA+I
      IR=IR-K
      K=K-1
      W(K)=SUM/W(IR)
      SUMX=SUMX+W(K)**2
      IF (K .GE. 2) GOTO 150
      DIAG=DIAG+VSMALL-TEMP/SUMX
      GOTO 70
C
C     STORE THE CHOLESKY FACTORISATION IN THE R-PARTITION
C     OF W.
C
  165 IR=IWR
      DO 166 I=1,N
      DO 166 J=1,I
      IR=IR+1
  166 W(IR)=G(J,I)
C
C     SET Z THE INVERSE OF THE MATRIX IN R.
C
  170 NM=N-1
      DO 220 I=1,N
      IZ=IWZ+I
      IF (I .EQ. 1) GOTO 190
      DO 180 J=2,I
      W(IZ)=ZERO
  180 IZ=IZ+N
  190 IR=IWR+(I+I*I)/2
      W(IZ)=ONE/W(IR)
      IF (I .EQ. N) GOTO 220
      IZA=IZ
      DO 210 J=I,NM
      IR=IR+I
      SUM=ZERO
      DO 200 K=IZA,IZ,N
      SUM=SUM+W(K)*W(IR)
  200 IR=IR+1
      IZ=IZ+N
  210 W(IZ)=-SUM/W(IR)
  220 CONTINUE
C
C     SET THE INITIAL VALUES OF SOME VARIABLES.
C     ITERC COUNTS THE NUMBER OF ITERATIONS.
C     ITREF IS SET TO ONE WHEN ITERATIVE REFINEMENT IS REQUIRED.
C     JFINC INDICATES WHEN TO TEST FOR AN INCREASE IN F.
C
      ITERC=1
      ITREF=0
      JFINC=-KFINC
C
C     SET X TO ZERO AND SET THE CORRESPONDING RESIDUALS OF THE
C     KUHN-TUCKER CONDITIONS.
C
  230 IFLAG=1
      IWS=IWW-N
      DO 240 I=1,N
      X(I)=ZERO
      IW=IWW+I
      W(IW)=GRAD(I)
      IF (I .GT. NACT) GOTO 240
      W(I)=ZERO
      IS=IWS+I
      K=IACT(I)
      IF (K .LE. M) GOTO 235
      IF (K .GT. MN) GOTO 234
      K1=K-M
      W(IS)=XL(K1)
      GOTO 240
  234 K1=K-MN
      W(IS)=-XU(K1)
      GOTO 240
  235 W(IS)=B(K)
  240 CONTINUE
      XMAG=ZERO
      VFACT=1.D+0
      IF (NACT) 340,340,280
C
C     SET THE RESIDUALS OF THE KUHN-TUCKER CONDITIONS FOR GENERAL X.
C
  250 IFLAG=2
      IWS=IWW-N
      DO 260 I=1,N
      IW=IWW+I
      W(IW)=GRAD(I)
      IF (LQL) GOTO 259
      ID=IWD+I
      W(ID)=ZERO
      DO 251 J=I,N
  251 W(ID)=W(ID)+G(I,J)*X(J)
      DO 252 J=1,I
      ID=IWD+J
  252 W(IW)=W(IW)+G(J,I)*W(ID)
      GOTO 260
  259 DO 261 J=1,N
  261 W(IW)=W(IW)+G(I,J)*X(J)
  260 CONTINUE
      IF (NACT .EQ. 0) GOTO 340
      DO 270 K=1,NACT
      KK=IACT(K)
      IS=IWS+K
      IF (KK .GT. M) GOTO 265
      W(IS)=B(KK)
      DO 264 I=1,N
      IW=IWW+I
      W(IW)=W(IW)-W(K)*A(KK,I)
  264 W(IS)=W(IS)-X(I)*A(KK,I)
      GOTO 270
  265 IF (KK .GT. MN) GOTO 266
      K1=KK-M
      IW=IWW+K1
      W(IW)=W(IW)-W(K)
      W(IS)=XL(K1)-X(K1)
      GOTO 270
  266 K1=KK-MN
      IW=IWW+K1
      W(IW)=W(IW)+W(K)
      W(IS)=-XU(K1)+X(K1)
  270 CONTINUE
C
C     PRE-MULTIPLY THE VECTOR IN THE S-PARTITION OF W BY THE
C     INVERS OF R TRANSPOSE.
C
  280 IR=IWR
      IP=IWW+1
      IPP=IWW+N
      IL=IWS+1
      IU=IWS+NACT
      DO 310 I=IL,IU
      SUM=ZERO
      IF (I .EQ. IL) GOTO 300
      JU=I-1
      DO 290 J=IL,JU
      IR=IR+1
  290 SUM=SUM+W(IR)*W(J)
  300 IR=IR+1
  310 W(I)=(W(I)-SUM)/W(IR)
C
C     SHIFT X TO SATISFY THE ACTIVE CONSTRAINTS AND MAKE THE
C     CORRESPONDING CHANGE TO THE GRADIENT RESIDUALS.
C
      DO 330 I=1,N
      IZ=IWZ+I
      SUM=ZERO
      DO 320 J=IL,IU
      SUM=SUM+W(J)*W(IZ)
  320 IZ=IZ+N
      X(I)=X(I)+SUM
      IF (LQL) GOTO 329
      ID=IWD+I
      W(ID)=ZERO
      DO 321 J=I,N
  321 W(ID)=W(ID)+G(I,J)*SUM
      IW=IWW+I
      DO 322 J=1,I
      ID=IWD+J
  322 W(IW)=W(IW)+G(J,I)*W(ID)
      GOTO 330
  329 DO 331 J=1,N
      IW=IWW+J
  331 W(IW)=W(IW)+SUM*G(I,J)
  330 CONTINUE
C
C     FORM THE SCALAR PRODUCT OF THE CURRENT GRADIENT RESIDUALS
C     WITH EACH COLUMN OF Z.
C
  340 KFLAG=1
      GOTO 930
  350 IF (NACT .EQ. N) GOTO 380
C
C     SHIFT X SO THAT IT SATISFIES THE REMAINING KUHN-TUCKER
C     CONDITIONS.
C
      IL=IWS+NACT+1
      IZA=IWZ+NACT*N
      DO 370 I=1,N
      SUM=ZERO
      IZ=IZA+I
      DO 360 J=IL,IWW
      SUM=SUM+W(IZ)*W(J)
  360 IZ=IZ+N
  370 X(I)=X(I)-SUM
      INFO=0
      IF (NACT .EQ. 0) GOTO 410
C
C     UPDATE THE LAGRANGE MULTIPLIERS.
C
  380 LFLAG=3
      GOTO 740
  390 DO 400 K=1,NACT
      IW=IWW+K
  400 W(K)=W(K)+W(IW)
C
C     REVISE THE VALUES OF XMAG.
C     BRANCH IF ITERATIVE REFINEMENT IS REQUIRED.
C
  410 JFLAG=1
      GOTO 910
  420 IF (IFLAG .EQ. ITREF) GOTO 250
C
C     DELETE A CONSTRAINT IF A LAGRANGE MULTIPLIER OF AN
C     INEQUALITY CONSTRAINT IS NEGATIVE.
C
      KDROP=0
      GOTO 440
  430 KDROP=KDROP+1
      IF (W(KDROP) .GE. ZERO) GOTO 440
      IF (IACT(KDROP) .LE. MEQ) GOTO 440
      NU=NACT
      MFLAG=1
      GOTO 800
  440 IF (KDROP .LT. NACT) GOTO 430
C
C     SEEK THE GREATEAST NORMALISED CONSTRAINT VIOLATION, DISREGARDING
C     ANY THAT MAY BE DUE TO COMPUTER ROUNDING ERRORS.
C
  450 CVMAX=ZERO
      IF (M .LE. 0) GOTO 481
      DO 480 K=1,M
      IA=IWA+K
      IF (W(IA) .LE. ZERO) GOTO 480
      SUM=-B(K)
      DO 460 I=1,N
  460 SUM=SUM+X(I)*A(K,I)
      SUMX=-SUM*W(IA)
      IF (K .LE. MEQ) SUMX=DABS(SUMX)
      IF (SUMX .LE. CVMAX) GOTO 480
      TEMP=DABS(B(K))
      DO 470 I=1,N
  470 TEMP=TEMP+DABS(X(I)*A(K,I))
      TEMPA=TEMP+DABS(SUM)
      IF (TEMPA .LE. TEMP) GOTO 480
      TEMP=TEMP+ONHA*DABS(SUM)
      IF (TEMP .LE. TEMPA) GOTO 480
      CVMAX=SUMX
      RES=SUM
      KNEXT=K
  480 CONTINUE
  481 DO 485 K=1,N
      LOWER=.TRUE.
      IA=IWA+M+K
      IF (W(IA) .LE. ZERO) GOTO 485
      SUM=XL(K)-X(K)
      IF (SUM) 482,485,483
  482 SUM=X(K)-XU(K)
      LOWER=.FALSE.
  483 IF (SUM .LE. CVMAX) GOTO 485
      CVMAX=SUM
      RES=-SUM
      KNEXT=K+M
      IF (LOWER) GOTO 485
      KNEXT=K+MN
  485 CONTINUE
C
C     TEST FOR CONVERGENCE
C
      INFO=0
      IF (CVMAX.ne.CVMAX.OR.CVMAX .LE. VSMALL) GOTO 700
C
C     RETURN IF, DUE TO ROUNDING ERRORS, THE ACTUAL CHANGE IN
C     X MAY NOT INCREASE THE OBJECTIVE FUNCTION
C
      JFINC=JFINC+1
      IF (JFINC .EQ. 0) GOTO 510
      IF (JFINC .NE. IFINC) GOTO 530
      FDIFF=ZERO
      FDIFFA=ZERO
      DO 500 I=1,N
      SUM=TWO*GRAD(I)
      SUMX=DABS(SUM)
      IF (LQL) GOTO 489
      ID=IWD+I
      W(ID)=ZERO
      DO 486 J=I,N
      IX=IWX+J
  486 W(ID)=W(ID)+G(I,J)*(W(IX)+X(J))
      DO 487 J=1,I
      ID=IWD+J
      TEMP=G(J,I)*W(ID)
      SUM=SUM+TEMP
  487 SUMX=SUMX+DABS(TEMP)
      GOTO 495
  489 DO 490 J=1,N
      IX=IWX+J
      TEMP=G(I,J)*(W(IX)+X(J))
      SUM=SUM+TEMP
  490 SUMX=SUMX+DABS(TEMP)
  495 IX=IWX+I
      FDIFF=FDIFF+SUM*(X(I)-W(IX))
  500 FDIFFA=FDIFFA+SUMX*DABS(X(I)-W(IX))
      INFO=2
      SUM=FDIFFA+FDIFF
      IF (SUM .LE. FDIFFA) GOTO 700
      TEMP=FDIFFA+ONHA*FDIFF
      IF (TEMP .LE. SUM) GOTO 700
      JFINC=0
      INFO=0
  510 DO 520 I=1,N
      IX=IWX+I
  520 W(IX)=X(I)
C
C     FORM THE SCALAR PRODUCT OF THE NEW CONSTRAINT NORMAL WITH EACH
C     COLUMN OF Z. PARNEW WILL BECOME THE LAGRANGE MULTIPLIER OF
C     THE NEW CONSTRAINT.
C
  530 ITERC=ITERC+1
      IF (ITERC.LE.MAXIT) GOTO 531
      INFO=1
      GOTO 710
  531 CONTINUE
      IWS=IWR+(NACT+NACT*NACT)/2
      IF (KNEXT .GT. M) GOTO 541
      DO 540 I=1,N
      IW=IWW+I
  540 W(IW)=A(KNEXT,I)
      GOTO 549
  541 DO 542 I=1,N
      IW=IWW+I
  542 W(IW)=ZERO
      K1=KNEXT-M
      IF (K1 .GT. N) GOTO 545
      IW=IWW+K1
      W(IW)=ONE
      IZ=IWZ+K1
      DO 543 I=1,N
      IS=IWS+I
      W(IS)=W(IZ)
  543 IZ=IZ+N
      GOTO 550
  545 K1=KNEXT-MN
      IW=IWW+K1
      W(IW)=-ONE
      IZ=IWZ+K1
      DO 546 I=1,N
      IS=IWS+I
      W(IS)=-W(IZ)
  546 IZ=IZ+N
      GOTO 550
  549 KFLAG=2
      GOTO 930
  550 PARNEW=ZERO
C
C     APPLY GIVENS ROTATIONS TO MAKE THE LAST (N-NACT-2) SCALAR
C     PRODUCTS EQUAL TO ZERO.
C
      IF (NACT .EQ. N) GOTO 570
      NU=N
      NFLAG=1
      GOTO 860
C
C     BRANCH IF THERE IS NO NEED TO DELETE A CONSTRAINT.
C
  560 IS=IWS+NACT
      IF (NACT .EQ. 0) GOTO 640
      SUMA=ZERO
      SUMB=ZERO
      SUMC=ZERO
      IZ=IWZ+NACT*N
      DO 563 I=1,N
      IZ=IZ+1
      IW=IWW+I
      SUMA=SUMA+W(IW)*W(IZ)
      SUMB=SUMB+DABS(W(IW)*W(IZ))
  563 SUMC=SUMC+W(IZ)**2
      TEMP=SUMB+.1D+0*DABS(SUMA)
      TEMPA=SUMB+.2D+0*DABS(SUMA)
      IF (TEMP .LE. SUMB) GOTO 570
      IF (TEMPA .LE. TEMP) GOTO 570
      IF (SUMB .GT. VSMALL) GOTO 5
      GOTO 570
    5 SUMC=DSQRT(SUMC)
      IA=IWA+KNEXT
      IF (KNEXT .LE. M) SUMC=SUMC/W(IA)
      TEMP=SUMC+.1D+0*DABS(SUMA)
      TEMPA=SUMC+.2D+0*DABS(SUMA)
      IF (TEMP .LE. SUMC) GOTO 567
      IF (TEMPA .LE. TEMP) GOTO 567
      GOTO 640
C
C     CALCULATE THE MULTIPLIERS FOR THE NEW CONSTRAINT NORMAL
C     EXPRESSED IN TERMS OF THE ACTIVE CONSTRAINT NORMALS.
C     THEN WORK OUT WHICH CONTRAINT TO DROP.
C
  567 LFLAG=4
      GOTO 740
  570 LFLAG=1
      GOTO 740
C
C     COMPLETE THE TEST FOR LINEARLY DEPENDENT CONSTRAINTS.
C
  571 IF (KNEXT .GT. M) GOTO 574
      DO 573 I=1,N
      SUMA=A(KNEXT,I)
      SUMB=DABS(SUMA)
      IF (NACT.EQ.0) GOTO 581
      DO 572 K=1,NACT
      KK=IACT(K)
      IF (KK.LE.M) GOTO 568
      KK=KK-M
      TEMP=ZERO
      IF (KK.EQ.I) TEMP=W(IWW+KK)
      KK=KK-N
      IF (KK.EQ.I) TEMP=-W(IWW+KK)
      GOTO 569
  568 CONTINUE
      IW=IWW+K
      TEMP=W(IW)*A(KK,I)
  569 CONTINUE
      SUMA=SUMA-TEMP
  572 SUMB=SUMB+DABS(TEMP)
  581 IF (SUMA .LE. VSMALL) GOTO 573
      TEMP=SUMB+.1D+0*DABS(SUMA)
      TEMPA=SUMB+.2D+0*DABS(SUMA)
      IF (TEMP .LE. SUMB) GOTO 573
      IF (TEMPA .LE. TEMP) GOTO 573
      GOTO 630
  573 CONTINUE
      LFLAG=1
      GOTO 775
  574 K1=KNEXT-M
      IF (K1 .GT. N) K1=K1-N
      DO 578 I=1,N
      SUMA=ZERO
      IF (I .NE. K1) GOTO 575
      SUMA=ONE
      IF (KNEXT .GT. MN) SUMA=-ONE
  575 SUMB=DABS(SUMA)
      IF (NACT.EQ.0) GOTO 582
      DO 577 K=1,NACT
      KK=IACT(K)
      IF (KK .LE. M) GOTO 579
      KK=KK-M
      TEMP=ZERO
      IF (KK.EQ.I) TEMP=W(IWW+KK)
      KK=KK-N
      IF (KK.EQ.I) TEMP=-W(IWW+KK)
      GOTO 576
  579 IW=IWW+K
      TEMP=W(IW)*A(KK,I)
  576 SUMA=SUMA-TEMP
  577 SUMB=SUMB+DABS(TEMP)
  582 TEMP=SUMB+.1D+0*DABS(SUMA)
      TEMPA=SUMB+.2D+0*DABS(SUMA)
      IF (TEMP .LE. SUMB) GOTO 578
      IF (TEMPA .LE. TEMP) GOTO 578
      GOTO 630
  578 CONTINUE
      LFLAG=1
      GOTO 775
C
C     BRANCH IF THE CONTRAINTS ARE INCONSISTENT.
C
  580 INFO=-KNEXT
      IF (KDROP .EQ. 0) GOTO 700
      PARINC=RATIO
      PARNEW=PARINC
C
C     REVISE THE LAGRANGE MULTIPLIERS OF THE ACTIVE CONSTRAINTS.
C
  590 IF (NACT.EQ.0) GOTO 601
      DO 600 K=1,NACT
      IW=IWW+K
      W(K)=W(K)-PARINC*W(IW)
      IF (IACT(K) .GT. MEQ) W(K)=DMAX1(ZERO,W(K))
  600 CONTINUE
  601 IF (KDROP .EQ. 0) GOTO 680
C
C     DELETE THE CONSTRAINT TO BE DROPPED.
C     SHIFT THE VECTOR OF SCALAR PRODUCTS.
C     THEN, IF APPROPRIATE, MAKE ONE MORE SCALAR PRODUCT ZERO.
C
      NU=NACT+1
      MFLAG=2
      GOTO 800
  610 IWS=IWS-NACT-1
      NU=MIN0(N,NU)
      DO 620 I=1,NU
      IS=IWS+I
      J=IS+NACT
  620 W(IS)=W(J+1)
      NFLAG=2
      GOTO 860
C
C     CALCULATE THE STEP TO THE VIOLATED CONSTRAINT.
C
  630 IS=IWS+NACT
  640 SUMY=W(IS+1)
      STEP=-RES/SUMY
      PARINC=STEP/SUMY
      IF (NACT .EQ. 0) GOTO 660
C
C     CALCULATE THE CHANGES TO THE LAGRANGE MULTIPLIERS, AND REDUCE
C     THE STEP ALONG THE NEW SEARCH DIRECTION IF NECESSARY.
C
      LFLAG=2
      GOTO 740
  650 IF (KDROP .EQ. 0) GOTO 660
      TEMP=ONE-RATIO/PARINC
      IF (TEMP .LE. ZERO) KDROP=0
      IF (KDROP .EQ. 0) GOTO 660
      STEP=RATIO*SUMY
      PARINC=RATIO
      RES=TEMP*RES
C
C     UPDATE X AND THE LAGRANGE MULTIPIERS.
C     DROP A CONSTRAINT IF THE FULL STEP IS NOT TAKEN.
C
  660 IWY=IWZ+NACT*N
      DO 670 I=1,N
      IY=IWY+I
  670 X(I)=X(I)+STEP*W(IY)
      PARNEW=PARNEW+PARINC
      IF (NACT .GE. 1) GOTO 590
C
C     ADD THE NEW CONSTRAINT TO THE ACTIVE SET.
C
  680 NACT=NACT+1
      W(NACT)=PARNEW
      IACT(NACT)=KNEXT
      IA=IWA+KNEXT
      IF (KNEXT .GT. MN) IA=IA-N
      W(IA)=-W(IA)
C
C     ESTIMATE THE MAGNITUDE OF X. THEN BEGIN A NEW ITERATION,
C     RE-INITILISING X IF THIS MAGNITUDE IS SMALL.
C
      JFLAG=2
      GOTO 910
  690 IF (SUM .LT. (XMAGR*XMAG)) GOTO 230
      IF (ITREF) 450,450,250
C
C     INITIATE ITERATIVE REFINEMENT IF IT HAS NOT YET BEEN USED,
C     OR RETURN AFTER RESTORING THE DIAGONAL ELEMENTS OF G.
C
  700 IF (ITERC .EQ. 0) GOTO 710
      ITREF=ITREF+1
      JFINC=-1
      IF (ITREF .EQ. 1) GOTO 250
  710 IF (.NOT. LQL) RETURN
      DO 720 I=1,N
      ID=IWD+I
  720 G(I,I)=W(ID)
  730 RETURN
C
C
C     THE REMAINIG INSTRUCTIONS ARE USED AS SUBROUTINES.
C
C
C********************************************************************
C
C
C     CALCULATE THE LAGRANGE MULTIPLIERS BY PRE-MULTIPLYING THE
C     VECTOR IN THE S-PARTITION OF W BY THE INVERSE OF R.
C
  740 IR=IWR+(NACT+NACT*NACT)/2
      I=NACT
      SUM=ZERO
      GOTO 770
  750 IRA=IR-1
      SUM=ZERO
      IF (NACT.EQ.0) GOTO 761
      DO 760 J=I,NACT
      IW=IWW+J
      SUM=SUM+W(IRA)*W(IW)
  760 IRA=IRA+J
  761 IR=IR-I
      I=I-1
  770 IW=IWW+I
      IS=IWS+I
      W(IW)=(W(IS)-SUM)/W(IR)
      IF (I .GT. 1) GOTO 750
      IF (LFLAG .EQ. 3) GOTO 390
      IF (LFLAG .EQ. 4) GOTO 571
C
C     CALCULATE THE NEXT CONSTRAINT TO DROP.
C
  775 IP=IWW+1
      IPP=IWW+NACT
      KDROP=0
      IF (NACT.EQ.0) GOTO 791
      DO 790 K=1,NACT
      IF (IACT(K) .LE. MEQ) GOTO 790
      IW=IWW+K
      IF ((RES*W(IW)) .GE. ZERO) GOTO 790
      TEMP=W(K)/W(IW)
      IF (KDROP .EQ. 0) GOTO 780
      IF (DABS(TEMP) .GE. DABS(RATIO)) GOTO 790
  780 KDROP=K
      RATIO=TEMP
  790 CONTINUE
  791 GOTO (580,650), LFLAG
C
C
C********************************************************************
C
C
C     DROP THE CONSTRAINT IN POSITION KDROP IN THE ACTIVE SET.
C
  800 IA=IWA+IACT(KDROP)
      IF (IACT(KDROP) .GT. MN) IA=IA-N
      W(IA)=-W(IA)
      IF (KDROP .EQ. NACT) GOTO 850
C
C     SET SOME INDICES AND CALCULATE THE ELEMENTS OF THE NEXT
C     GIVENS ROTATION.
C
      IZ=IWZ+KDROP*N
      IR=IWR+(KDROP+KDROP*KDROP)/2
  810 IRA=IR
      IR=IR+KDROP+1
      TEMP=DMAX1(DABS(W(IR-1)),DABS(W(IR)))
      SUM=TEMP*DSQRT((W(IR-1)/TEMP)**2+(W(IR)/TEMP)**2)
      GA=W(IR-1)/SUM
      GB=W(IR)/SUM
C
C     EXCHANGE THE COLUMNS OF R.
C
      DO 820 I=1,KDROP
      IRA=IRA+1
      J=IRA-KDROP
      TEMP=W(IRA)
      W(IRA)=W(J)
  820 W(J)=TEMP
      W(IR)=ZERO
C
C     APPLY THE ROTATION TO THE ROWS OF R.
C
      W(J)=SUM
      KDROP=KDROP+1
      DO 830 I=KDROP,NU
      TEMP=GA*W(IRA)+GB*W(IRA+1)
      W(IRA+1)=GA*W(IRA+1)-GB*W(IRA)
      W(IRA)=TEMP
  830 IRA=IRA+I
C
C     APPLY THE ROTATION TO THE COLUMNS OF Z.
C
      DO 840 I=1,N
      IZ=IZ+1
      J=IZ-N
      TEMP=GA*W(J)+GB*W(IZ)
      W(IZ)=GA*W(IZ)-GB*W(J)
  840 W(J)=TEMP
C
C     REVISE IACT AND THE LAGRANGE MULTIPLIERS.
C
      IACT(KDROP-1)=IACT(KDROP)
      W(KDROP-1)=W(KDROP)
      IF (KDROP .LT. NACT) GOTO 810
  850 NACT=NACT-1
      GOTO (250,610), MFLAG
C
C
C********************************************************************
C
C
C     APPLY GIVENS ROTATION TO REDUCE SOME OF THE SCALAR
C     PRODUCTS IN THE S-PARTITION OF W TO ZERO.
C
  860 IZ=IWZ+NU*N
  870 IZ=IZ-N
  880 IS=IWS+NU
      NU=NU-1
      IF (NU .EQ. NACT) GOTO 900
      IF (W(IS) .EQ. ZERO) GOTO 870
      TEMP=DMAX1(DABS(W(IS-1)),DABS(W(IS)))
      SUM=TEMP*DSQRT((W(IS-1)/TEMP)**2+(W(IS)/TEMP)**2)
      GA=W(IS-1)/SUM
      GB=W(IS)/SUM
      W(IS-1)=SUM
      DO 890 I=1,N
      K=IZ+N
      TEMP=GA*W(IZ)+GB*W(K)
      W(K)=GA*W(K)-GB*W(IZ)
      W(IZ)=TEMP
  890 IZ=IZ-1
      GOTO 880
  900 GOTO (560,630), NFLAG
C
C
C********************************************************************
C
C
C     CALCULATE THE MAGNITUDE OF X AN REVISE XMAG.
C
  910 SUM=ZERO
      DO 920 I=1,N
      SUM=SUM+DABS(X(I))*VFACT*(DABS(GRAD(I))+DABS(G(I,I)*X(I)))
      IF (LQL) GOTO 920
      IF (SUM .LT. 1.D-30) GOTO 920
      VFACT=1.D-10*VFACT
      SUM=1.D-10*SUM
      XMAG=1.D-10*XMAG
  920 CONTINUE
  925 XMAG=DMAX1(XMAG,SUM)
      GOTO (420,690), JFLAG
C
C
C********************************************************************
C
C
C     PRE-MULTIPLY THE VECTOR IN THE W-PARTITION OF W BY Z TRANSPOSE.
C
  930 JL=IWW+1
      IZ=IWZ
      DO 940 I=1,N
      IS=IWS+I
      W(IS)=ZERO
      IWWN=IWW+N
      DO 940 J=JL,IWWN
      IZ=IZ+1
  940 W(IS)=W(IS)+W(IZ)*W(J)
      GOTO (350,550), KFLAG
      RETURN
      END