1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
/*
* Copyright (c) 1994 by Lieven Vandenberghe and Stephen Boyd.
* Permission to use, copy, modify, and distribute this software for
* any purpose without fee is hereby granted, provided that this entire
* notice is included in all copies of any software which is or includes
* a copy or modification of this software and in all copies of the
* supporting documentation for such software.
* This software is being provided "as is", without any express or
* implied warranty. In particular, the authors do not make any
* representation or warranty of any kind concerning the merchantability
* of this software or its fitness for any particular purpose.
*/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "spd.h"
#ifdef WIN32
extern void Scistring (char *str);
#endif
void cngrncb(itype,n,AP,B,CP,temp)
int itype;
int n;
double *AP;
double *B;
double *CP;
double *temp;
/*
* if itype = 1, computes C = B*A*B', otherwise, computes C = B'*A*B
* A and B are nxn with A symmetric.
*
* Arguments:
* - itype = 1: compute C = B*A*B'
* = any other integer: computes C = B'*A*B
* - n dimension of A and B
* - AP (input) double array of size n*(n+1)2;
* the lower triangle of A in packed storage
* - B (input) double array of size n*n;
* - CP (output) double array of size n*(n+1)/2;
* the lower triangle of C in packed storage
* - temp: n-array, workspace
*/
{
int j, pos, lngth = n*(n+1)/2;
int int1=1;
double dbl0=0.0, dbl1=1.0;
/* C := 0 */
F2C(dscal)(&lngth, &dbl0, CP, &int1);
if (itype == 1){
for (j=0, pos=0; j<n; pos+=n-j, j++){
/* temp = A*B(j,:)' */
F2C(dspmv)("L", &n, &dbl1, AP, B+j, &n, &dbl0, temp, &int1);
/* C(j:n,j) = B(j:n,:)*temp */
lngth = n-j;
F2C(dgemv)("N", &lngth, &n, &dbl1, B+j, &n, temp, &int1, &dbl0,
CP+pos, &int1);
}
} else {
for (j=0, pos=0; j<n; pos+=n-j, j++){
/* temp = A*B(:,j) */
F2C(dspmv)("L", &n, &dbl1, AP, B+j*n, &int1, &dbl0, temp, &int1);
/* C(j:n,j) = B(:,j:n)'*temp */
lngth = n-j;
F2C(dgemv)("T", &n, &lngth, &dbl1, B+j*n, &n, temp, &int1, &dbl0,
CP+pos, &int1);
}
}
}
double inprd(X,Z,L,blck_szs)
double *X;
double *Z;
int L;
int *blck_szs;
/*
* Computes Tr X*Z
*
* Arguments:
* X,Z: block diagonal matrices with L blocks X^0, ..., X^{L-1},
* and Z^0, ..., Z^{L-1}. X^j and Z^j have size
* blck_szs[j] times blck_szs[j]. Every block is stored
* using packed storage of the lower triangle.
* L: number of blocks
* blck_szs: integer vector of length L
* blck_szs[i], i=0,...,L-1 is the size of block i
*
*/
{
double result;
int i, j, k, lngth, pos, sz, int1=1;
/* sz = length of Z and X */
for (i=0, sz=0; i<L; i++) sz += (blck_szs[i]*(blck_szs[i]+1))/2;
/* result = Tr X Z + contributions of diagonal elements */
result = 2.0*F2C(ddot)(&sz, X, &int1, Z, &int1);
/* correct for diagonal elements
* loop over blocks, j=0,...,L-1 */
for (j=0, pos=0; j<L; j++)
/* loop over columns, k=0,...,blck_szs[j]-1
* pos is position of (k,k) element of block j
* lngth is length of column k */
for (k=0, lngth=blck_szs[j]; k<blck_szs[j]; pos+=lngth,
lngth-=1, k++)
/* subtract Z^j_{kk}*X^j_{kk} from result */
result -= Z[pos]*X[pos];
return result;
}
int C2F(spf)(m,L,F,blck_szs,c,x,Z,ul,nu,abstol,reltol,tv,iters,
work,lwork,iwork,info)
int *m; /* no of variables */
int *L; /* no of blocks in F */
double *F; /* F_i's in packed storage */
int *blck_szs; /* L-vector, dimensions of diagonal blocks */
double *c; /* m-vector */
double *x; /* m-vector */
double *Z; /* block diagonal matrix in packed storage */
double *ul; /* ul[0] = pr. obj, ul[1] = du. obj */
double *nu; /* >= 1.0 */
double *abstol; /* absolute accuracy */
double *reltol; /* relative accuracy */
double *tv; /* target value */
int *iters; /* on entry: the maximum number of iterations,
* on exit: the number of iterations taken */
double *work; /* work array */
int *lwork; /* size of work */
int *iwork; /* work array of m integers */
int *info; /* status on termination */
{
return(sp(*m,*L,F,blck_szs,c,x,Z,ul,*nu,*abstol,*reltol,*tv,iters, work,
*lwork,iwork,info));
}
int sp(m,L,F,blck_szs,c,x,Z,ul,nu,abstol,reltol,tv,iters,work,
lwork,iwork,info)
int m; /* no of variables */
int L; /* no of blocks in F */
double *F; /* F_i's in packed storage */
int *blck_szs; /* L-vector, dimensions of diagonal blocks */
double *c; /* m-vector */
double *x; /* m-vector */
double *Z; /* block diagonal matrix in packed storage */
double *ul; /* ul[0] = pr. obj, ul[1] = du. obj */
double nu; /* >= 1.0 */
double abstol; /* absolute accuracy */
double reltol; /* relative accuracy */
double tv; /* target value */
int *iters; /* on entry: the maximum number of iterations,
* on exit: the number of iterations taken */
double *work; /* work array */
int lwork; /* size of work */
int *iwork; /* work array of m integers */
int *info; /* status on termination */
/*
* Solves semidefinite program
*
* minimize c'*x
* subject to F_0 + x_1*F_1 + ... + x_m*F_m >= 0
*
* and its dual
*
* maximize -Tr F_0*Z
* subject to Z >= 0
* Tr F_i*Z = c_i, i=1,...,m
*
*
* Convergence criteria:
* (1) maxiters is exceeded
* (2) duality gap is less than abstol
* (3) primal and dual objective are both positive and
* duality gap is less than reltol * dual objective
* or primal and dual objective are both negative and
* duality gap is less than reltol * minus the primal objective
* (4) reltol is negative and primal objective is less than tv
* (5) reltol is negative and dual objective is greater than tv
*
* Arguments:
* - m: number of variables x_i. m >= 1.
* - L: number of diagonal blocks in F_i. L >= 1.
* - F: the block diagonal matrices F_i, i=0,...,m.
* it is assumed that the matrices F_i are linearly
* independent.
* let F_i^j, i=0,..,m, j=0,...,L-1 denote the jth
* diagonal block of F_i,
* the array F contains F_0^0, ..., F_0^{L-1}, F_1^0, ...,
* F_1^{L-1}, ..., F_m^0, ..., F_m^{L-1}, in this order,
* using packed storage for the lower triangular part of
* F_i^j.
* - blck_szs: an integer L-vector. blck_szs[j], j=0,....L-1 gives the
* size of block j, ie, F_i^j has size blck_szs[j]
* times blck_szs[j].
* - c: m-vector, primal objective.
* - x: m-vector. On entry, a strictly primal feasible point.
* On exit, the last iterate for x.
* - Z: block diagonal matrix with L blocks Z^0, ..., Z^{L-1}.
* Z^j has size blck_szs[j] times blck_szs[j].
* Every block is stored using packed storage of the lower
* triangular part.
* On entry, a strictly dual feasible point. On exit, the
* last dual iterate.
* - ul: two-vector. On exit, ul[0] is the primal objective value
* c'*x; ul[1] is the dual objective value -Tr F_0*Z.
* - nu: >= 1.0. Controls the rate of convergence.
* - abstol: absolute tolerance, >= MINABSTOL.
* - reltol: relative tolerance. Has a special meaning when negative.
* - tv: target value, only referenced if reltol < 0.
* - iters: on entry: maximum number of iterations >= 0,
* on exit: the number of iterations taken.
* - work: work array of size lwork.
* - lwork: size of work, must be at least:
* (m+2)*sz + up_sz + 2*n + ltemp, with
* ltemp = max( m+sz*nb, 3max_n + max_n*(max_n+1), 3*m )
* (sz: space needed to store one matrix F_i in packed
* storage, ie,
* sum_{j=0}^{L-1} blck_szs[j]*(blck_szs[j]+1)/2;
* up_sz: space needed to store one matrix F_i in
* unpacked storage, ie,
* sum_{j=0}^{L-1} blck_szs[j]*blck_szs[j];
* max_n: max block size;
* n: sum of the block sizes.
* nb >= 1, for best performance, nb should be at least
* equal to the optimal block size for dgels.
* - iwork: work array of m integers
* - info: returns 1 if maxiters exceeded, 2 if absolute accuracy
* is reached, 3 if relative accuracy is reached,
* 4 if target value is reached, 5 if target value is
* not achievable;
* negative values indicate errors: -i means argument i
* has an illegal value, -18 stands for all other errors.
*
*
* Returns 0 for normal exit, 1 if an error occurred.
*
*/
{
int i, j, k, n, sz, up_sz, max_n, lngth, pos, pos2, pos3, pos4, ltemp,
maxiters, info2, minlwork;
double q, *rhs, *Fsc, *R, *X, rho, *dx, *sigx, *sigz, *dZ, *temp, scal,
scal2, XdZ, ZdX, alphax, alphaz, lambda_ls, gradx, hessx,
gradz, hessz, dalphax, dalphaz, gap, newgap=0.0, newu=0.0,
newl=0.0, maxpossigx, minnegsigx, maxpossigz, minnegsigz, nrmc,
nrmx, nrmz, nrmmax, rcond;
int int2=2, int1=1;
double dbl1=1.0, dbl0=0.0, sqrt2=sqrt(2.0);
char str[100];
double dbl_epsilon;
if (m < 1){
sprintf(str, "m must be at least one. \n");
Scistring(str);
*info = -1;
return 1;
}
if (L < 1){
sprintf(str, "L must be at least one. \n");
Scistring(str);
*info = -2;
return 1;
}
for (i=0; i<L; i++) if (blck_szs[i] < 1){
sprintf(str, "blck_szs[%d] must be at least one.\n", i);
Scistring(str);
*info = -4;
return 1;
}
if (nu < 1.0){
sprintf(str, "nu must be at least 1.0. \n");
Scistring(str);
*info = -9;
return 1;
}
/*
* calculate dimensions:
* n: total size of semidefinite program
* sz: length of one block-diagonal matrix in packed storage
* up_sz: length of one block-diagonal matrix in unpacked storage
* max_n: size of biggest block
*/
for (i=0, n=0, sz=0, up_sz=0, max_n=0; i<L; i++){
n += blck_szs[i];
sz += blck_szs[i]*(blck_szs[i]+1)/2;
up_sz += blck_szs[i]*blck_szs[i];
max_n = MAX(max_n, blck_szs[i]);
}
if (m > sz){
sprintf(str, "The matrices Fi, i=1,...,m are linearly dependent.\n");
Scistring(str);
*info = -3; return 1;
}
q = (double)n + nu*sqrt((double)n);
/*
* check if Tr Fi*Z = c_i, i=1,...,m
*/
nrmc = F2C(dnrm2)(&m, c, &int1);
for (i=0; i<m; i++)
if (fabs(inprd(F+(i+1)*sz, Z, L, blck_szs) - c[i]) > nrmc*TOLC){
sprintf(str, "Z0 does not satisfy equality conditions\
for dual feasibility.\n");
Scistring(str);
*info = -7;
return 1;
}
/*
* organize workspace
*
* work: (m+2)*sz + up_sz + 2*n + ltemp
* minimum ltemp: the maximum of
* m+sz*nb, 3*max_n + max_n*(max_n+1), and 3*m
* (nb is at least one)
*
* for dgels: m + sz*nb, nb at least 1
* for dspev("N"): 3*max_n + max_n*(max_n+1)
* for dspgv("N"): 3*max_n + max_n*(max_n+1)
* for dspgv("V"): 3*max_n + max_n*(max_n+1)/2
* for cngrncb: max_n
* for dtrcon: 3*m
*
* rhs (sz): work[0 ... sz-1]
* Fsc (m*sz): work[sz ... (m+1)*sz-1]
* R (up_sz): work[(m+1)*sz ... (m+1)*sz+up_sz-1]
* X (sz): work[(m+1)*sz+up_sz ... (m+2)*sz+up_sz-1]
* sigx (n): work[(m+2)*sz+up_sz ... (m+2)*sz+up_sz+n-1]
* sigz (n): work[(m+2)*sz+up_sz+n ... (m+2)*sz+up_sz+2*n-1]
* temp (remainder): work[(m+2)*sz+up_sz+2*n ... lwork-1]
*/
/* check lwork */
minlwork = (m+2)*sz + up_sz + 2*n +
MAX( MAX( m+sz, 3*max_n + max_n*(max_n+1) ), 3*m );
if (lwork < minlwork){
sprintf(str, "Work space is too small. Need at least\
%d*sizeof(double).\n", minlwork);
Scistring(str);
*info = -15;
return 1;
}
rhs = work; /* rhs for ls problem */
dx = work; /* solution of ls system; overlaps with rhs */
Fsc = rhs + sz; /* scaled matrices */
dZ = rhs + sz; /* overlaps with first column of Fsc */
R = Fsc + m*sz; /* eigenvectors of Z*F */
X = R + up_sz; /* F(x) */
sigx = X + sz; /* generalized eigenvalues of (dX,X) */
sigz = sigx + n; /* generalized eigenvalues of (dZ,Z) */
temp = sigz + n;
ltemp = lwork - (m+2)*sz - up_sz - 2*n;
maxiters = (*iters >= 0) ? *iters : MAXITERS;
for (*iters=0; *iters <= maxiters; (*iters)++){
/* compute F(x) = F_0 + x_1*F_1 + ... + x_m*F_m, store in X */
F2C(dcopy)(&sz, F, &int1, X, &int1);
F2C(dgemv)("N", &sz, &m, &dbl1, F+sz, &sz, x, &int1, &dbl1, X, &int1);
/*
* compute generalized eigendecomp Z*F*x = lambda*x
* loop over blocks, i=0,...,L-1
* pos: position of (0,0) element of block i in packed storage
* pos2: position of (0,0) element of block i in unpacked
* storage
* pos3: position of first eigenvalue of block i in sigx
*/
for (i=0, pos=0, pos2=0, pos3=0, gap=0.0; i<L;
pos += blck_szs[i]*(blck_szs[i]+1)/2,
pos2 += blck_szs[i]*blck_szs[i],
pos3 += blck_szs[i], i++){
lngth = blck_szs[i]*(blck_szs[i]+1)/2;
/* copy block i of Z in temp (need max_n*(max_n+1)/2) */
F2C(dcopy)(&lngth, Z+pos, &int1, temp, &int1);
/* generalized eigenvalue decomposition Z*F*x = lambda*x
* - eigenvectors V are normalized s.t. V^T*F*V = I
* - store block i of V in R+pos2
* - store eigenvalues of block i in sigx+pos3
* - dspgv replaces X+pos by cholesky factor L of ith
* block of F (F = L*L^T)
* use temp+lngth as workspace (need at least 3*max_n) */
F2C(dspgv)(&int2, "V", "L", blck_szs+i, temp, X+pos, sigx+pos3,
R+pos2, blck_szs+i, temp+lngth, &info2);
if (info2){
sprintf(str,"Error in dspgv, info = %d.\n", info2);
Scistring(str);
if (*iters == 0 && info2 > blck_szs[i]){
sprintf(str, "x0 is not strictly primal feasible.\n");
Scistring(str);
*info = -6;
} else *info = -18;
return 1;
}
/* - replace sigx+pos3 by lambda^(1/2)
* - normalize block i of V (stored in R+pos2) s.t.
* V^T*F*V = Lambda^(1/2) */
for (k=0; k<blck_szs[i]; k++){
scal = sigx[pos3+k];
if (scal < 0.0){
if (*iters == 0){
sprintf(str, "Z0 is not positive definite.\n");
Scistring(str);
*info = 7;
} else {
sprintf(str, "F(x)*Z has a negative eigenvalue.\n");
Scistring(str);
*info = -18;
}
return 1;
}
gap += scal; /* duality gap is sum of eigenvalues of ZF */
scal2 = sqrt(scal);
scal = sqrt(scal2);
sigx[pos3+k] = scal2;
F2C(dscal)(blck_szs+i, &scal, R+pos2+k*blck_szs[i], &int1);
}
}
/*
* check convergence
*/
ul[1] = -inprd(F,Z,L,blck_szs); /* -Tr F_0 Z */
ul[0] = F2C(ddot)(&m, c, &int1, x, &int1); /* c^T x */
if (*iters == 0){
sprintf(str,"\n primal obj. dual obj. dual. gap \n");
Scistring(str);
}
sprintf(str,"% 13.2e % 12.2e %10.2e \n", ul[0], ul[1], gap);
Scistring(str);
if (gap <= MAX(abstol, MINABSTOL)) *info = 2;
else if ( (ul[1] > 0.0 && gap <= reltol*ul[1]) ||
(ul[0] < 0.0 && gap <= reltol*(-ul[0])) ) *info = 3;
else if ( reltol < 0.0 && ul[0] <= tv ) *info = 4;
else if ( reltol < 0.0 && ul[1] >= tv ) *info = 5;
else if ( *iters == maxiters ) *info = 1;
else *info = 0;
if (*info) return 0;
/*
* compute scaled matrices F
*/
for (j=0, pos=0; j<m; j++) for (i=0, pos2=0; i<L;
pos += blck_szs[i]*(blck_szs[i]+1)/2,
pos2 += blck_szs[i]*blck_szs[i], i++) {
/* compute R' * Fj(i) * R, store in Fsc+pos */
cngrncb(2, blck_szs[i], F+sz+pos, R+pos2, Fsc+pos, temp);
/* correct diagonal elements */
for (k=0, pos4=pos; k<blck_szs[i]; pos4 += blck_szs[i]-k, k++)
Fsc[pos4] /= sqrt2;
}
/*
* form rhs = Lambda^(-1/2) - (q/gap) * Lambda^(1/2)
*/
F2C(dscal)(&sz, &dbl0, rhs, &int1); /* rhs := 0 */
rho = -q/gap;
for (i=0, pos=0, pos3=0; i<L;
pos += blck_szs[i]*(blck_szs[i]+1)/2,
pos3 += blck_szs[i], i++)
for (k=0, pos4=pos; k<blck_szs[i]; pos4+=blck_szs[i]-k, k++){
scal = sigx[pos3+k];
rhs[pos4] = (1.0/scal + rho*scal)/sqrt2;
}
/*
* solve least-squares problem; need workspace of size m + nb*sz
* - rhs is overwritten by dx
* - in first iteration, estimate condition number of Fsc
*/
F2C(dgels)("N", &sz, &m, &int1, Fsc, &sz, rhs, &sz, temp, <emp,
&info2);
if (info2){
sprintf(str,"Error in dgels, info = %d.\n", info2);
Scistring(str);
*info = -18; return 1;
}
if (*iters == 0){
/* estimate the condition number in 1-norm of the R-factor of
* the qr-decomposition of Fsc (is stored in Fsc)
* need work space of size 3*m */
F2C(dtrcon)("1", "U", "N", &m, Fsc, &sz, &rcond, temp, iwork,
&info2);
if (info2 < 0){
sprintf(str,"Error in dtrcon, info = %d.\n", info2);
Scistring(str);
*info = -18; return 1;
}
if (rcond < MINRCOND) {
sprintf(str,"The matrices F_i, i=1,...,m are linearly\
dependent (or the initial points are very badly conditioned).\n");
Scistring(str);
*info = -3; return 1;
}
}
/*
* - compute dZ =
* R*((q/gap)*Lambda^(1/2) - Lambda^(-1/2) + R^T*dF*R )*R^T
* - compute generalized eigenvalues of (dF, F), store in sigx
* - compute generalized eigenvalues of (dZ, Z), store in sigz
*
* loop over blocks i=0,...,L-1
* pos: position of (0,0) element of block i in packed storage
* pos2: position of (0,0) element of block i in unpacked storage
* pos3: position of first eigenvalue of in sigx and sigz
*/
for (i=0, pos=0, pos2=0, pos3=0; i<L;
pos += blck_szs[i]*(blck_szs[i]+1)/2,
pos2 += blck_szs[i]*blck_szs[i],
pos3 += blck_szs[i], i++){
lngth = blck_szs[i]*(blck_szs[i]+1)/2;
/* compute ith block of dF = \sum \delta x_i F_i,
* store in temp */
F2C(dgemv)("N", &lngth, &m, &dbl1, F+sz+pos, &sz, dx, &int1,
&dbl0, temp, &int1);
/* scale dF as R'*dF*R, store in temp + lngth */
cngrncb(2, blck_szs[i], temp, R+pos2, temp+lngth, temp+2*lngth);
/* add (q/gap)*Lambda^(1/2) - Lambda^(-1/2) */
for (k=0, pos4=lngth; k<blck_szs[i]; pos4+=blck_szs[i]-k, k++)
temp[pos4] -= rho*sigx[pos3+k] + 1.0/sigx[pos3+k];
/* replace dF in temp by L^{-1}*dF*L^{-T},
* (L: cholesky factor of F, stored in X)
* and compute eigenvalues of L^{-1}*dF*L^{-T} */
F2C(dspgst)(&int1, "L", blck_szs+i, temp, X+pos, &info2);
if (info2){
sprintf(str,"Error in dspst, info = %d.\n", info2);
Scistring(str);
*info = -18; return 1;
}
/* temp has to be of size max_n*(max_n+1)+3*max_n */
F2C(dspev)("N", "L", blck_szs+i, temp, sigx+pos3, NULL, &int1,
temp+2*lngth, &info2);
if (info2){
sprintf(str,"Error in dspev, info = %d.\n", info2);
Scistring(str);
*info = -18; return 1;
}
/* dZ := R*((q/gap)*Lambda^(1/2) - Lambda^(-1/2) + R'*dF*R)*R' */
cngrncb(1, blck_szs[i], temp+lngth, R+pos2, dZ+pos,
temp+2*lngth);
/* copy ith block of dZ to temp */
F2C(dcopy)(&lngth, dZ+pos, &int1, temp, &int1);
/* copy ith block of Z to temp + lngth */
F2C(dcopy)(&lngth, Z+pos, &int1, temp+lngth, &int1);
/* sigz: generalized eigenvalues of (dZ,Z)
* required size of temp: 3*max_n + max_n*(max_n+1) */
F2C(dspgv)(&int1, "N", "L", blck_szs+i, temp, temp+lngth, sigz+pos3,
NULL, &int1, temp+2*lngth, &info2);
if (info2){
sprintf(str,"Error in dspgv, info = %d.\n", info2);Scistring(str);
*info = -18; return 1;
}
}
/*
* compute feasible rectangle for plane search
*/
maxpossigx = 0.0; minnegsigx = 0.0;
maxpossigz = 0.0; minnegsigz = 0.0;
for (i=0; i<n; i++) {
if ( sigx[i] > maxpossigx )
maxpossigx = sigx[i]; /* max pos eigenvalue in sigx */
else if ( sigx[i] < minnegsigx )
minnegsigx = sigx[i]; /* min neg eigenvalue in sigx */
if ( sigz[i] > maxpossigz )
maxpossigz = sigz[i]; /* max pos eigenvalue in sigz */
else if ( sigz[i] < minnegsigz )
minnegsigz = sigz[i]; /* min neg eigenvalue in sigz */
}
nrmx = F2C(dnrm2)(&n, sigx, &int1); /* norm of scaled dx */
nrmz = F2C(dnrm2)(&n, sigz, &int1); /* norm of scaled dZ */
nrmmax = MAX( nrmx, nrmz);
XdZ = inprd(F,dZ,L,blck_szs); /* Tr F0*dZ */
ZdX = F2C(ddot)(&m, c, &int1, dx, &int1); /* c^T*dx */
/*
* check corners of feasible rectangle
*/
dbl_epsilon = F2C(dlamch)("e");
if (nrmx > SIGTOL*nrmmax)
if (ZdX < 0.0)
alphax = (minnegsigx < -dbl_epsilon) ? -1.0/minnegsigx : 0.0;
else
alphax = (maxpossigx > dbl_epsilon) ? -1.0/maxpossigx : 0.0;
else alphax = 0.0;
if (nrmz > SIGTOL*nrmmax)
if (XdZ < 0.0)
alphaz = (minnegsigz < -dbl_epsilon) ? -1.0/minnegsigz : 0.0;
else
alphaz = (maxpossigz > dbl_epsilon) ? -1.0/maxpossigz : 0.0;
else alphaz = 0.0;
newgap = gap + alphax*ZdX + alphaz*XdZ;
newu = ul[0] + alphax*ZdX;
newl = ul[1] - alphaz*XdZ;
if (newgap <= MAX(abstol, MINABSTOL)) *info = 2;
else if ( (newl > 0.0 && newgap <= reltol*newl) ||
(newu < 0.0 && newgap <= -reltol*newu) ) *info = 3;
else if ( reltol < 0.0 && newu <= tv ) *info = 4;
else if ( reltol < 0.0 && newl >= tv ) *info = 5;
else if ( *iters == maxiters ) *info = 1;
else *info = 0;
if (*info) {
F2C(daxpy)(&m, &alphax, dx, &int1, x, &int1);
F2C(daxpy)(&sz, &alphaz, dZ, &int1, Z, &int1);
gap = newgap; ul[0] = newu; ul[1] = newl;
sprintf(str,"% 13.2e % 12.2e %10.2e \n", ul[0], ul[1], gap);
Scistring(str);
(*iters)++;
return 0;
}
/*
* plane search
* minimize phi(alphax,alphaz) =
* q*log(dual_gap + alphax*c^T*dx + alphaz* Tr F_0 dZ)
* - sum log (1+alphax*sigx_i) - sum log (1+alphaz*sigz)
*/
alphax = 0.0; alphaz = 0.0; lambda_ls = 1.0;
if (nrmx > SIGTOL*nrmmax)
if (nrmz > SIGTOL*nrmmax) /* compute primal and dual steps */
while ( lambda_ls > 1e-4 ) {
/* compute 1st and 2nd derivatives of phi */
rho = q/(gap + alphax*ZdX + alphaz*XdZ);
gradx = rho*ZdX; hessx = 0.0;
gradz = rho*XdZ; hessz = 0.0;
for (i=0; i<n; i++){
gradx -= sigx[i] / (1.0+alphax*sigx[i]);
hessx += SQR( sigx[i] / (1.0+alphax*sigx[i]) );
gradz -= sigz[i] / (1.0+alphaz*sigz[i]);
hessz += SQR( sigz[i] / (1.0+alphaz*sigz[i]) );
}
/* newton step */
dalphax = -gradx/hessx; dalphaz = -gradz/hessz;
lambda_ls = sqrt( SQR(gradx)/hessx + SQR(gradz)/hessz );
alphax += (lambda_ls > 0.25) ?
dalphax/(1.0+lambda_ls) : dalphax;
alphaz += (lambda_ls > 0.25) ?
dalphaz/(1.0+lambda_ls) : dalphaz;
}
else while ( lambda_ls > 1e-4 ) { /* primal step only */
/* compute 1st and 2nd derivatives of phi */
rho = q/(gap + alphax*ZdX);
gradx = rho*ZdX; hessx = 0.0;
for (i=0; i<n; i++){
gradx -= sigx[i] / (1.0+alphax*sigx[i]);
hessx += SQR( sigx[i] / (1.0+alphax*sigx[i]) );
}
/* newton step */
dalphax = -gradx/hessx;
lambda_ls = fabs(gradx)/sqrt(hessx);
alphax += (lambda_ls > 0.25) ?
dalphax/(1.0+lambda_ls) : dalphax;
}
else if (nrmz > SIGTOL*nrmmax) /* dual step only */
while ( lambda_ls > 1e-4 ) {
/* compute 1st and 2nd derivatives of phi */
rho = q/(gap + alphaz*XdZ);
gradz = rho*XdZ; hessz = 0.0;
for (i=0; i<n; i++){
gradz -= sigz[i] / (1.0+alphaz*sigz[i]);
hessz += SQR( sigz[i] / (1.0+alphaz*sigz[i]) );
}
/* newton step */
dalphaz = -gradz/hessz;
lambda_ls = fabs(gradz)/sqrt(hessz);
alphaz += (lambda_ls > 0.25) ?
dalphaz/(1.0+lambda_ls) : dalphaz;
}
/* update x and Z */
F2C(daxpy)(&m, &alphax, dx, &int1, x, &int1);
F2C(daxpy)(&sz, &alphaz, dZ, &int1, Z, &int1);
}
return -1; /* should never happen */
}
|