1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
* PURPOSE
* clcg4 generator stuff
*
* AUTHORS
* The following code is from L'Ecuyer and Andres "A Randow Number based
* on the combinaison of Four LCG" (distributed at the Pierre L'Ecuyer
* home page with a corresponding paper).
*
* NOTES
* The original code was slightly modified by Bruno Pincon for inclusion
* in Scilab.
*
* list of main modifs :
*
* - lot of routine 's names have changed to have some kind of
* uniformity with the others generators
*
* - add a var is_init so that initialisation is performed inside
* this module (to simplify the interface). And bring modif in
* the different routines :
* if (!is_init) then proceed to initialisation ...
*
* - add a routine advance_state_clcg4 (for compatibility with the
* old package (Scilab used this feature))
*
* - I have change the generator (clcg4 routine) so as it has the
* form (1) in place of (2) (see the joined paper of L'Ecuyer &
* Andres) :
*
* From the 4 LCG :
*
* x_{j,n} = a_j * x_{j,n-1} mod m_j 0 <= j <= 3
*
* The output with form (2) (original form in this code) :
*
* z_n = ( sum_j delta_j * x_{j,n} / m_j ) mod 1
*
* have been changed in the form (1) :
*
* z_n = ( sum_j delta_j * x_{j,n} ) mod m_1 (then u_n = z_n / m_1)
*
* to have some "uniformity" with all the others generators (which
* gives integers). Also it is better for the uin(a,b) generation
* to start from integers.
*/
/*---------------------------------------------------------------------*/
/* clcg4.c Implementation module */
/*---------------------------------------------------------------------*/
#include "../graphics/Math.h" /* to use sciprint */
#include "clcg4.h"
#include <math.h> /* for floor */
/***********************************************************************/
/* Private part. */
/***********************************************************************/
#define H 32768 /* = 2^15 : use in MultModM. */
static long aw[4], avw[4], /* a[j]^{2^w} et a[j]^{2^{v+w}}. */
a[4] = { 45991, 207707, 138556, 49689 },
m[4] = { 2147483647, 2147483543, 2147483423, 2147483323 };
static long Ig[4][Maxgen+1], Lg[4][Maxgen+1], Cg[4][Maxgen+1];
/* Initial seed, previous seed, and current seed. */
static int is_init = 0;
static long v_default = 31;
static long w_default = 41;
static long MultModM (long s, long t, long M)
/* Returns (s*t) MOD M. Assumes that -M < s < M and -M < t < M. */
/* See L'Ecuyer and Cote (1991). */
{
long R, S0, S1, q, qh, rh, k;
if (s < 0) s += M;
if (t < 0) t += M;
if (s < H) { S0 = s; R = 0; }
else
{
S1 = s/H; S0 = s - H*S1;
qh = M/H; rh = M - H*qh;
if (S1 >= H)
{
S1 -= H; k = t/qh; R = H * (t - k*qh) - k*rh;
while (R < 0) R += M;
}
else R = 0;
if (S1 != 0)
{
q = M/S1; k = t/q; R -= k * (M - S1*q);
if (R > 0) R -= M;
R += S1*(t - k*q);
while (R < 0) R += M;
}
k = R/qh; R = H * (R - k*qh) - k*rh;
while (R < 0) R += M;
}
if (S0 != 0)
{
q = M/S0; k = t/q; R -= k* (M - S0*q);
if (R > 0) R -= M;
R += S0 * (t - k*q);
while (R < 0) R += M;
}
return R;
}
void comp_aw_and_avw(long v, long w)
{
int i, j;
for (j = 0; j < 4; j++)
{
aw [j] = a [j];
for (i = 1; i <= w; i++)
aw [j] = MultModM (aw [j], aw [j], m[j]);
avw [j] = aw [j];
for (i = 1; i <= v; i++)
avw [j] = MultModM (avw [j], avw [j], m[j]);
}
}
void init_clcg4(long v, long w)
{
/* currently the scilab interface don't let the user chooses
* v and w (always v_default and w_default) so this routine
* is in the "private" part (also because initialisation is
* always perform inside this module, depending of the var
* is_init)
*/
double sd[4] = {11111111., 22222222., 33333333., 44444444.};
comp_aw_and_avw(v, w);
set_initial_seed_clcg4(sd[0], sd[1], sd[2], sd[3]);
}
int verif_seeds_clcg4(double s0, double s1, double s2, double s3)
{
/* verify that the seeds are "integers" and are in the good range */
if ( s0 == floor(s0) && s1 == floor(s1) &&
s2 == floor(s2) && s3 == floor(s3) &&
1 <= s0 && s0 <= 2147483646 &&
1 <= s1 && s1 <= 2147483542 &&
1 <= s2 && s2 <= 2147483422 &&
1 <= s3 && s3 <= 2147483322 )
return ( 1 );
else
return ( 0 );
}
void display_info_clcg4()
{
/* display the seeds range (in case of error) */
sciprint("\n\r bad seeds for clcg4, must be integers with s1 in [1, 2147483646]");
sciprint("\n\r s2 in [1, 2147483542]");
sciprint("\n\r s3 in [1, 2147483422]");
sciprint("\n\r s4 in [1, 2147483322]");
}
/*---------------------------------------------------------------------*/
/* Public part. */
/*---------------------------------------------------------------------*/
int set_seed_clcg4(int g, double s0, double s1, double s2, double s3)
{
if (! is_init ) {init_clcg4(v_default,w_default); is_init = 1; };
if ( verif_seeds_clcg4(s0, s1, s2, s3) )
{
Ig [0][g] = (long) s0; Ig [1][g] = (long) s1;
Ig [2][g] = (long) s2; Ig [3][g] = (long) s3;
init_generator_clcg4(g, InitialSeed);
sciprint("\n\r => be aware that you have may lost synchronization");
sciprint("\n\r between the virtual gen %d and the others !", g);
sciprint("\n\r use grand(\"setall\", s1, s2, s3, s4) if you want recover it.");
return ( 1 );
}
else
{
display_info_clcg4();
return ( 0 );
}
}
void get_state_clcg4(int g, double s[4])
{
int j;
if (! is_init ) {init_clcg4(v_default,w_default); is_init = 1; };
for (j = 0; j < 4; j++) s [j] = (double) Cg [j][g];
}
void init_generator_clcg4(int g, SeedType Where)
{
int j;
if (! is_init ) {init_clcg4(v_default,w_default); is_init = 1; };
for (j = 0; j < 4; j++)
{
switch (Where)
{
case InitialSeed :
Lg [j][g] = Ig [j][g]; break;
case NewSeed :
Lg [j][g] = MultModM (aw [j], Lg [j][g], m [j]); break;
case LastSeed :
break;
}
Cg [j][g] = Lg [j][g];
}
}
void advance_state_clcg4(int g, int k)
{
long int b[4];
int i, j;
if (! is_init ) {init_clcg4(v_default,w_default); is_init = 1; };
for ( j = 0 ; j < 4 ; j++ )
{
b[j] = a[j];
for ( i = 1 ; i <= k ; i++ )
b[j] = MultModM( b[j], b[j], m[j]);
Ig[j][g] = MultModM ( b[j], Cg[j][g], m[j] );
}
init_generator_clcg4(g, InitialSeed);
}
int set_initial_seed_clcg4(double s0, double s1, double s2, double s3)
{
int g, j;
if (! is_init ) comp_aw_and_avw(v_default,w_default);
if ( ! verif_seeds_clcg4(s0, s1, s2, s3) )
{
display_info_clcg4();
return ( 0 );
};
is_init = 1;
Ig [0][0] = (long) s0;
Ig [1][0] = (long) s1;
Ig [2][0] = (long) s2;
Ig [3][0] = (long) s3;
init_generator_clcg4(0, InitialSeed);
for (g = 1; g <= Maxgen; g++)
{
for (j = 0; j < 4; j++)
Ig [j][g] = MultModM (avw [j], Ig [j][g-1], m [j]);
init_generator_clcg4(g, InitialSeed);
}
return ( 1 );
}
unsigned long clcg4(int g)
{
/* Modif Bruno : the generator have now the form (1) in place of (2) */
long k,s;
double u;
if (! is_init ) {init_clcg4(v_default,w_default); is_init = 1; };
/* advance the 4 LCG */
s = Cg [0][g]; k = s / 46693;
s = 45991 * (s - k * 46693) - k * 25884;
if (s < 0) s = s + 2147483647; Cg [0][g] = s;
s = Cg [1][g]; k = s / 10339;
s = 207707 * (s - k * 10339) - k * 870;
if (s < 0) s = s + 2147483543; Cg [1][g] = s;
s = Cg [2][g]; k = s / 15499;
s = 138556 * (s - k * 15499) - k * 3979;
if (s < 0) s = s + 2147483423; Cg [2][g] = s;
s = Cg [3][g]; k = s / 43218;
s = 49689 * (s - k * 43218) - k * 24121;
if (s < 0) s = s + 2147483323; Cg [3][g] = s;
/* final step */
u = (double)(Cg[0][g] - Cg[1][g]) + (double)(Cg[2][g] - Cg[3][g]);
/* we must do u mod 2147483647 with u in [- 4294966863 ; 4294967066 ] : */
if (u < 0) u += 2147483647;
if (u < 0) u += 2147483647;
if (u >= 2147483647) u -= 2147483647;
if (u >= 2147483647) u -= 2147483647;
return ((unsigned long) u );
}
|