File: genbet.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (245 lines) | stat: -rw-r--r-- 5,829 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
      DOUBLE PRECISION FUNCTION genbet(aa,bb)
C**********************************************************************
C
C     DOUBLE PRECISION FUNCTION GENBET( A, B )
C               GeNerate BETa random deviate
C
C
C                              Function
C
C
C     Returns a single random deviate from the beta distribution with
C     parameters A and B.  The density of the beta is
C               x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1
C
C
C                              Arguments
C
C
C     A --> First parameter of the beta distribution
C                         DOUBLE PRECISION A
C     JJV                 (A > 1.0E-37)
C
C     B --> Second parameter of the beta distribution
C                         DOUBLE PRECISION B
C     JJV                 (B > 1.0E-37)
C
C
C                              Method
C
C
C     R. C. H. Cheng
C     Generating Beta Variates with Nonintegral Shape Parameters
C     Communications of the ACM, 21:317-322  (1978)
C     (Algorithms BB and BC)
C
C**********************************************************************
C     .. Parameters ..
C     Close to the largest number that can be exponentiated
      DOUBLE PRECISION expmax
C     JJV changed this - 89 was too high, and LOG(1.0E38) = 87.49823
      PARAMETER (expmax=87.49823)
C     Close to the largest representable single precision number
      DOUBLE PRECISION infnty
      PARAMETER (infnty=1.0E38)
C     JJV added the parameter minlog
C     Close to the smallest number of which a LOG can be taken.
      DOUBLE PRECISION minlog
      PARAMETER (minlog=1.0E-37)
C     ..
C     .. Scalar Arguments ..
      DOUBLE PRECISION aa,bb
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION a,alpha,b,beta,delta,gamma,k1,k2,olda,oldb,r,s,t,
     +     u1,u2,v,w,y,z
      LOGICAL qsame
C     ..
C     .. External Functions ..
      DOUBLE PRECISION ranf
      EXTERNAL ranf
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC exp,log,max,min,sqrt
C     ..
C     .. Save statement ..
C     JJV added a,b
      SAVE olda,oldb,alpha,beta,gamma,k1,k2,a,b
C     ..
C     .. Data statements ..
C     JJV changed these to ridiculous values
      DATA olda,oldb/-1.0E37,-1.0E37/
C     ..
C     .. Executable Statements ..
      qsame = (olda.EQ.aa) .AND. (oldb.EQ.bb)
      IF (qsame) GO TO 20
C     JJV added small minimum for small log problem in calc of W
C     in Rand.c
   10 olda = aa
      oldb = bb
   20 IF (.NOT. (min(aa,bb).GT.1.0)) GO TO 100


C     Alborithm BB

C
C     Initialize
C
      IF (qsame) GO TO 30
      a = min(aa,bb)
      b = max(aa,bb)
      alpha = a + b
      beta = sqrt((alpha-2.0)/ (2.0*a*b-alpha))
      gamma = a + 1.0/beta
   30 CONTINUE
   40 u1 = ranf()
C
C     Step 1
C
      u2 = ranf()
      v = beta*log(u1/ (1.0-u1))
C     JJV altered this
      IF (v.GT.expmax) GO TO 55
C     JJV added checker to see if a*exp(v) will overflow
C     JJV 50 _was_ w = a*exp(v); also note here a > 1.0
   50 w = exp(v)
      IF (w.GT.infnty/a) GO TO 55
      w = a*w
      GO TO 60
 55   w = infnty

   60 z = u1**2*u2
      r = gamma*v - 1.3862944
      s = a + r - w
C
C     Step 2
C
      IF ((s+2.609438).GE. (5.0*z)) GO TO 70
C
C     Step 3
C
      t = log(z)
      IF (s.GT.t) GO TO 70
C
C     Step 4
C
C     JJV added checker to see if log(alpha/(b+w)) will 
C     JJV overflow.  If so, we count the log as -INF, and
C     JJV consequently evaluate conditional as true, i.e.
C     JJV the algorithm rejects the trial and starts over
C     JJV May not need this here since ALPHA > 2.0
      IF (alpha/(b+w).LT.minlog) GO TO 40

      IF ((r+alpha*log(alpha/ (b+w))).LT.t) GO TO 40
C
C     Step 5
C
   70 IF (.NOT. (aa.EQ.a)) GO TO 80
      genbet = w/ (b+w)
      GO TO 90

   80 genbet = b/ (b+w)
   90 GO TO 230


C     Algorithm BC

C
C     Initialize
C
  100 IF (qsame) GO TO 110
      a = max(aa,bb)
      b = min(aa,bb)
      alpha = a + b
      beta = 1.0/b
      delta = 1.0 + a - b
      k1 = delta* (0.0138889+0.0416667*b)/ (a*beta-0.777778)
      k2 = 0.25 + (0.5+0.25/delta)*b
  110 CONTINUE
  120 u1 = ranf()
C
C     Step 1
C
      u2 = ranf()
      IF (u1.GE.0.5) GO TO 130
C
C     Step 2
C
      y = u1*u2
      z = u1*y
      IF ((0.25*u2+z-y).GE.k1) GO TO 120
      GO TO 170
C
C     Step 3
C
  130 z = u1**2*u2
      IF (.NOT. (z.LE.0.25)) GO TO 160
      v = beta*log(u1/ (1.0-u1))

C     JJV instead of checking v > expmax at top, I will check
C     JJV if a < 1, then check the appropriate values

      IF (a.GT.1.0) GO TO 135
C     JJV A < 1 so it can help out if EXP(V) would overflow
      IF (v.GT.expmax) GO TO 132
      w = a*exp(v)
      GO TO 200
 132  w = v + log(a)
      IF (w.GT.expmax) GO TO 140
      w = exp(w)
      GO TO 200

C     JJV in this case A > 1
 135  IF (v.GT.expmax) GO TO 140
      w = exp(v)
      IF (w.GT.infnty/a) GO TO 140
      w = a*w
      GO TO 200
 140  w = infnty
      GO TO 200

  160 IF (z.GE.k2) GO TO 120
C
C     Step 4
C
C
C     Step 5
C
  170 v = beta*log(u1/ (1.0-u1))

C     JJV same kind of checking as above
      IF (a.GT.1.0) GO TO 175
C     JJV A < 1 so it can help out if EXP(V) would overflow
      IF (v.GT.expmax) GO TO 172
      w = a*exp(v)
      GO TO 190
 172  w = v + log(a)
      IF (w.GT.expmax) GO TO 180
      w = exp(w)
      GO TO 190

C     JJV in this case A > 1
 175  IF (v.GT.expmax) GO TO 180
      w = exp(v)
      IF (w.GT.infnty/a) GO TO 180
      w = a*w
      GO TO 190

  180 w = infnty

C     JJV here we also check to see if log overlows; if so, we treat it
C     JJV as -INF, which means condition is true, i.e. restart
  190 IF (alpha/(b+w).LT.minlog) GO TO 120
      IF ((alpha* (log(alpha/ (b+w))+v)-1.3862944).LT.log(z)) GO TO 120
C
C     Step 6
C
  200 IF (.NOT. (a.EQ.aa)) GO TO 210
      genbet = w/ (b+w)
      GO TO 220

  210 genbet = b/ (b+w)
  220 CONTINUE
  230 RETURN

      END