File: ignbin.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (320 lines) | stat: -rw-r--r-- 10,021 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
      INTEGER FUNCTION ignbin(n,pp)
C**********************************************************************
C
C     INTEGER FUNCTION IGNBIN( N, PP )
C
C                    GENerate BINomial random deviate
C
C
C                              Function
C
C
C     Generates a single random deviate from a binomial
C     distribution whose number of trials is N and whose
C     probability of an event in each trial is P.
C
C
C                              Arguments
C
C
C     N  --> The number of trials in the binomial distribution
C            from which a random deviate is to be generated.
C                              INTEGER N
C     JJV                      (N >= 0)
C
C     PP --> The probability of an event in each trial of the
C            binomial distribution from which a random deviate
C            is to be generated.
C                              DOUBLE PRECISION PP
C     JJV                      (0.0 <= pp <= 1.0)
C
C     IGNBIN <-- A random deviate yielding the number of events
C                from N independent trials, each of which has
C                a probability of event P.
C                              INTEGER IGNBIN
C
C
C                              Note
C
C
C     Uses RANF so the value of the seeds, ISEED1 and ISEED2 must be set
C     by a call similar to the following
C          DUM = RANSET( ISEED1, ISEED2 )
C
C
C                              Method
C
C
C     This is algorithm BTPE from:
C
C         Kachitvichyanukul, V. and Schmeiser, B. W.
C
C         Binomial Random Variate Generation.
C         Communications of the ACM, 31, 2
C         (February, 1988) 216.
C
C**********************************************************************
C     SUBROUTINE BTPEC(N,PP,ISEED,JX)
C
C     BINOMIAL RANDOM VARIATE GENERATOR
C     MEAN .LT. 30 -- INVERSE CDF
C       MEAN .GE. 30 -- ALGORITHM BTPE:  ACCEPTANCE-REJECTION VIA
C       FOUR REGION COMPOSITION.  THE FOUR REGIONS ARE A TRIANGLE
C       (SYMMETRIC IN THE CENTER), A PAIR OF PARALLELOGRAMS (ABOVE
C       THE TRIANGLE), AND EXPONENTIAL LEFT AND RIGHT TAILS.
C
C     BTPE REFERS TO BINOMIAL-TRIANGLE-PARALLELOGRAM-EXPONENTIAL.
C     BTPEC REFERS TO BTPE AND "COMBINED."  THUS BTPE IS THE
C       RESEARCH AND BTPEC IS THE IMPLEMENTATION OF A COMPLETE
C       USABLE ALGORITHM.
C     REFERENCE:  VORATAS KACHITVICHYANUKUL AND BRUCE SCHMEISER,
C       "BINOMIAL RANDOM VARIATE GENERATION,"
C       COMMUNICATIONS OF THE ACM, FORTHCOMING
C     WRITTEN:  SEPTEMBER 1980.
C       LAST REVISED:  MAY 1985, JULY 1987
C     REQUIRED SUBPROGRAM:  RAND() -- A UNIFORM (0,1) RANDOM NUMBER
C                           GENERATOR
C     ARGUMENTS
C
C       N : NUMBER OF BERNOULLI TRIALS            (INPUT)
C       PP : PROBABILITY OF SUCCESS IN EACH TRIAL (INPUT)
C       ISEED:  RANDOM NUMBER SEED                (INPUT AND OUTPUT)
C       JX:  RANDOMLY GENERATED OBSERVATION       (OUTPUT)
C
C     VARIABLES
C       PSAVE: VALUE OF PP FROM THE LAST CALL TO BTPEC
C       NSAVE: VALUE OF N FROM THE LAST CALL TO BTPEC
C       XNP:  VALUE OF THE MEAN FROM THE LAST CALL TO BTPEC
C
C       P: PROBABILITY USED IN THE GENERATION PHASE OF BTPEC
C       FFM: TEMPORARY VARIABLE EQUAL TO XNP + P
C       M:  INTEGER VALUE OF THE CURRENT MODE
C       FM:  FLOATING POINT VALUE OF THE CURRENT MODE
C       XNPQ: TEMPORARY VARIABLE USED IN SETUP AND SQUEEZING STEPS
C       P1:  AREA OF THE TRIANGLE
C       C:  HEIGHT OF THE PARALLELOGRAMS
C       XM:  CENTER OF THE TRIANGLE
C       XL:  LEFT END OF THE TRIANGLE
C       XR:  RIGHT END OF THE TRIANGLE
C       AL:  TEMPORARY VARIABLE
C       XLL:  RATE FOR THE LEFT EXPONENTIAL TAIL
C       XLR:  RATE FOR THE RIGHT EXPONENTIAL TAIL
C       P2:  AREA OF THE PARALLELOGRAMS
C       P3:  AREA OF THE LEFT EXPONENTIAL TAIL
C       P4:  AREA OF THE RIGHT EXPONENTIAL TAIL
C       U:  A U(0,P4) RANDOM VARIATE USED FIRST TO SELECT ONE OF THE
C           FOUR REGIONS AND THEN CONDITIONALLY TO GENERATE A VALUE
C           FROM THE REGION
C       V:  A U(0,1) RANDOM NUMBER USED TO GENERATE THE RANDOM VALUE
C           (REGION 1) OR TRANSFORMED INTO THE VARIATE TO ACCEPT OR
C           REJECT THE CANDIDATE VALUE
C       IX:  INTEGER CANDIDATE VALUE
C       X:  PRELIMINARY CONTINUOUS CANDIDATE VALUE IN REGION 2 LOGIC
C           AND A FLOATING POINT IX IN THE ACCEPT/REJECT LOGIC
C       K:  ABSOLUTE VALUE OF (IX-M)
C       F:  THE HEIGHT OF THE SCALED DENSITY FUNCTION USED IN THE
C           ACCEPT/REJECT DECISION WHEN BOTH M AND IX ARE SMALL
C           ALSO USED IN THE INVERSE TRANSFORMATION
C       R: THE RATIO P/Q
C       G: CONSTANT USED IN CALCULATION OF PROBABILITY
C       MP:  MODE PLUS ONE, THE LOWER INDEX FOR EXPLICIT CALCULATION
C            OF F WHEN IX IS GREATER THAN M
C       IX1:  CANDIDATE VALUE PLUS ONE, THE LOWER INDEX FOR EXPLICIT
C             CALCULATION OF F WHEN IX IS LESS THAN M
C       I:  INDEX FOR EXPLICIT CALCULATION OF F FOR BTPE
C       AMAXP: MAXIMUM ERROR OF THE LOGARITHM OF NORMAL BOUND
C       YNORM: LOGARITHM OF NORMAL BOUND
C       ALV:  NATURAL LOGARITHM OF THE ACCEPT/REJECT VARIATE V
C
C       X1,F1,Z,W,Z2,X2,F2, AND W2 ARE TEMPORARY VARIABLES TO BE
C       USED IN THE FINAL ACCEPT/REJECT TEST
C
C       QN: PROBABILITY OF NO SUCCESS IN N TRIALS
C
C     REMARK
C       IX AND JX COULD LOGICALLY BE THE SAME VARIABLE, WHICH WOULD
C       SAVE A MEMORY POSITION AND A LINE OF CODE.  HOWEVER, SOME
C       COMPILERS (E.G.,CDC MNF) OPTIMIZE BETTER WHEN THE ARGUMENTS
C       ARE NOT INVOLVED.
C
C     ISEED NEEDS TO BE DOUBLE PRECISION IF THE IMSL ROUTINE
C     GGUBFS IS USED TO GENERATE UNIFORM RANDOM NUMBER, OTHERWISE
C     TYPE OF ISEED SHOULD BE DICTATED BY THE UNIFORM GENERATOR
C
C**********************************************************************

C
C
C
C*****DETERMINE APPROPRIATE ALGORITHM AND WHETHER SETUP IS NECESSARY
C
C     ..
C     .. Scalar Arguments ..
      DOUBLE PRECISION pp
      INTEGER n
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION al,alv,amaxp,c,f,f1,f2,ffm,fm,g,p,p1,p2,p3,p4,
     +     psave,q,qn,r,u,
     +     v,w,w2,x,x1,x2,xl,xll,xlr,xm,xnp,xnpq,xr,ynorm,z,z2
      INTEGER i,ix,ix1,k,m,mp,nsave
C     ..
C     .. External Functions ..
      DOUBLE PRECISION ranf
      EXTERNAL ranf
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC abs,log,dmin1,iabs,int,sqrt
C     JJV ..
C     JJV .. Save statement ..
      SAVE p,q,m,fm,xnp,xnpq,p1,xm,xl,xr,c,xll,xlr,p2,p3,p4,qn,r,g,
     +     psave,nsave
C     JJV I am including the variables in data statements
C     ..
C     .. Data statements ..
C     JJV made these ridiculous starting values - the hope is that
C     JJV no one will call this the first time with them as args
      DATA psave,nsave/-1.0E37,-214748365/
C     ..
C     .. Executable Statements ..
      IF (pp.NE.psave) GO TO 10
      IF (n.NE.nsave) GO TO 20
      IF (xnp-30.) 150,30,30
C
C*****SETUP, PERFORM ONLY WHEN PARAMETERS CHANGE
C

C     JJV added the argument checker - involved only renaming 10
C     JJV and 20 to the checkers and adding checkers
C     JJV Only remaining problem - if called initially with the
C     JJV initial values of psave and nsave, it will hang
 10   continue
      psave = pp
      p = dmin1(psave,1.-psave)
      q = 1. - p
 20   continue
      xnp = n*p
      nsave = n
      IF (xnp.LT.30.) GO TO 140
      ffm = xnp + p
      m = ffm
      fm = m
      xnpq = xnp*q
      p1 = int(2.195*sqrt(xnpq)-4.6*q) + 0.5
      xm = fm + 0.5
      xl = xm - p1
      xr = xm + p1
      c = 0.134 + 20.5/ (15.3+fm)
      al = (ffm-xl)/ (ffm-xl*p)
      xll = al* (1.+.5*al)
      al = (xr-ffm)/ (xr*q)
      xlr = al* (1.+.5*al)
      p2 = p1* (1.+c+c)
      p3 = p2 + c/xll
      p4 = p3 + c/xlr
C      WRITE(6,100) N,P,P1,P2,P3,P4,XL,XR,XM,FM
C  100 FORMAT(I15,4F18.7/5F18.7)
C
C*****GENERATE VARIATE
C
   30 u = ranf()*p4
      v = ranf()
C
C     TRIANGULAR REGION
C
      IF (u.GT.p1) GO TO 40
      ix = xm - p1*v + u
      GO TO 170
C
C     PARALLELOGRAM REGION
C
   40 IF (u.GT.p2) GO TO 50
      x = xl + (u-p1)/c
      v = v*c + 1. - abs(xm-x)/p1
      IF (v.GT.1. .OR. v.LE.0.) GO TO 30
      ix = x
      GO TO 70
C
C     LEFT TAIL
C
   50 IF (u.GT.p3) GO TO 60
      ix = xl + log(v)/xll
      IF (ix.LT.0) GO TO 30
      v = v* (u-p2)*xll
      GO TO 70
C
C     RIGHT TAIL
C
   60 ix = xr - log(v)/xlr
      IF (ix.GT.n) GO TO 30
      v = v* (u-p3)*xlr
C
C*****DETERMINE APPROPRIATE WAY TO PERFORM ACCEPT/REJECT TEST
C
   70 k = iabs(ix-m)
      IF (k.GT.20 .AND. k.LT.xnpq/2-1) GO TO 130
C
C     EXPLICIT EVALUATION
C
      f = 1.0
      r = p/q
      g = (n+1)*r
      IF (m-ix) 80,120,100
   80 mp = m + 1
      DO 90 i = mp,ix
          f = f* (g/i-r)
   90 CONTINUE
      GO TO 120

  100 ix1 = ix + 1
      DO 110 i = ix1,m
          f = f/ (g/i-r)
  110 CONTINUE
  120 IF (v-f) 170,170,30
C
C     SQUEEZING USING UPPER AND LOWER BOUNDS ON LOG(F(X))
C
  130 amaxp = (k/xnpq)* ((k* (k/3.+.625)+.1666666666666)/xnpq+.5)
      ynorm = -k*k/ (2.*xnpq)
      alv = log(v)
      IF (alv.LT.ynorm-amaxp) GO TO 170
      IF (alv.GT.ynorm+amaxp) GO TO 30
C
C     STIRLING'S FORMULA TO MACHINE ACCURACY FOR
C     THE FINAL ACCEPTANCE/REJECTION TEST
C
      x1 = ix + 1
      f1 = fm + 1.
      z = n + 1 - fm
      w = n - ix + 1.
      z2 = z*z
      x2 = x1*x1
      f2 = f1*f1
      w2 = w*w
      IF (alv- (xm*log(f1/x1)+ (n-m+.5)*log(z/w)+ (ix-
     +    m)*log(w*p/ (x1*q))+ (13860.- (462.- (132.- (99.-
     +    140./f2)/f2)/f2)/f2)/f1/166320.+ (13860.- (462.- (132.- (99.-
     +    140./z2)/z2)/z2)/z2)/z/166320.+ (13860.- (462.- (132.- (99.-
     +    140./x2)/x2)/x2)/x2)/x1/166320.+ (13860.- (462.- (132.- (99.-
     +    140./w2)/w2)/w2)/w2)/w/166320.)) 170,170,30
C
C     INVERSE CDF LOGIC FOR MEAN LESS THAN 30
C
  140 qn = q**n
      r = p/q
      g = r* (n+1)
  150 ix = 0
      f = qn
      u = ranf()
  160 IF (u.LT.f) GO TO 170
      IF (ix.GT.110) GO TO 150
      u = u - f
      ix = ix + 1
      f = f* (g/ix-r)
      GO TO 160

  170 IF (psave.GT.0.5) ix = n - ix
      ignbin = ix
      RETURN

      END