1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
INTEGER FUNCTION ignbin(n,pp)
C**********************************************************************
C
C INTEGER FUNCTION IGNBIN( N, PP )
C
C GENerate BINomial random deviate
C
C
C Function
C
C
C Generates a single random deviate from a binomial
C distribution whose number of trials is N and whose
C probability of an event in each trial is P.
C
C
C Arguments
C
C
C N --> The number of trials in the binomial distribution
C from which a random deviate is to be generated.
C INTEGER N
C JJV (N >= 0)
C
C PP --> The probability of an event in each trial of the
C binomial distribution from which a random deviate
C is to be generated.
C DOUBLE PRECISION PP
C JJV (0.0 <= pp <= 1.0)
C
C IGNBIN <-- A random deviate yielding the number of events
C from N independent trials, each of which has
C a probability of event P.
C INTEGER IGNBIN
C
C
C Note
C
C
C Uses RANF so the value of the seeds, ISEED1 and ISEED2 must be set
C by a call similar to the following
C DUM = RANSET( ISEED1, ISEED2 )
C
C
C Method
C
C
C This is algorithm BTPE from:
C
C Kachitvichyanukul, V. and Schmeiser, B. W.
C
C Binomial Random Variate Generation.
C Communications of the ACM, 31, 2
C (February, 1988) 216.
C
C**********************************************************************
C SUBROUTINE BTPEC(N,PP,ISEED,JX)
C
C BINOMIAL RANDOM VARIATE GENERATOR
C MEAN .LT. 30 -- INVERSE CDF
C MEAN .GE. 30 -- ALGORITHM BTPE: ACCEPTANCE-REJECTION VIA
C FOUR REGION COMPOSITION. THE FOUR REGIONS ARE A TRIANGLE
C (SYMMETRIC IN THE CENTER), A PAIR OF PARALLELOGRAMS (ABOVE
C THE TRIANGLE), AND EXPONENTIAL LEFT AND RIGHT TAILS.
C
C BTPE REFERS TO BINOMIAL-TRIANGLE-PARALLELOGRAM-EXPONENTIAL.
C BTPEC REFERS TO BTPE AND "COMBINED." THUS BTPE IS THE
C RESEARCH AND BTPEC IS THE IMPLEMENTATION OF A COMPLETE
C USABLE ALGORITHM.
C REFERENCE: VORATAS KACHITVICHYANUKUL AND BRUCE SCHMEISER,
C "BINOMIAL RANDOM VARIATE GENERATION,"
C COMMUNICATIONS OF THE ACM, FORTHCOMING
C WRITTEN: SEPTEMBER 1980.
C LAST REVISED: MAY 1985, JULY 1987
C REQUIRED SUBPROGRAM: RAND() -- A UNIFORM (0,1) RANDOM NUMBER
C GENERATOR
C ARGUMENTS
C
C N : NUMBER OF BERNOULLI TRIALS (INPUT)
C PP : PROBABILITY OF SUCCESS IN EACH TRIAL (INPUT)
C ISEED: RANDOM NUMBER SEED (INPUT AND OUTPUT)
C JX: RANDOMLY GENERATED OBSERVATION (OUTPUT)
C
C VARIABLES
C PSAVE: VALUE OF PP FROM THE LAST CALL TO BTPEC
C NSAVE: VALUE OF N FROM THE LAST CALL TO BTPEC
C XNP: VALUE OF THE MEAN FROM THE LAST CALL TO BTPEC
C
C P: PROBABILITY USED IN THE GENERATION PHASE OF BTPEC
C FFM: TEMPORARY VARIABLE EQUAL TO XNP + P
C M: INTEGER VALUE OF THE CURRENT MODE
C FM: FLOATING POINT VALUE OF THE CURRENT MODE
C XNPQ: TEMPORARY VARIABLE USED IN SETUP AND SQUEEZING STEPS
C P1: AREA OF THE TRIANGLE
C C: HEIGHT OF THE PARALLELOGRAMS
C XM: CENTER OF THE TRIANGLE
C XL: LEFT END OF THE TRIANGLE
C XR: RIGHT END OF THE TRIANGLE
C AL: TEMPORARY VARIABLE
C XLL: RATE FOR THE LEFT EXPONENTIAL TAIL
C XLR: RATE FOR THE RIGHT EXPONENTIAL TAIL
C P2: AREA OF THE PARALLELOGRAMS
C P3: AREA OF THE LEFT EXPONENTIAL TAIL
C P4: AREA OF THE RIGHT EXPONENTIAL TAIL
C U: A U(0,P4) RANDOM VARIATE USED FIRST TO SELECT ONE OF THE
C FOUR REGIONS AND THEN CONDITIONALLY TO GENERATE A VALUE
C FROM THE REGION
C V: A U(0,1) RANDOM NUMBER USED TO GENERATE THE RANDOM VALUE
C (REGION 1) OR TRANSFORMED INTO THE VARIATE TO ACCEPT OR
C REJECT THE CANDIDATE VALUE
C IX: INTEGER CANDIDATE VALUE
C X: PRELIMINARY CONTINUOUS CANDIDATE VALUE IN REGION 2 LOGIC
C AND A FLOATING POINT IX IN THE ACCEPT/REJECT LOGIC
C K: ABSOLUTE VALUE OF (IX-M)
C F: THE HEIGHT OF THE SCALED DENSITY FUNCTION USED IN THE
C ACCEPT/REJECT DECISION WHEN BOTH M AND IX ARE SMALL
C ALSO USED IN THE INVERSE TRANSFORMATION
C R: THE RATIO P/Q
C G: CONSTANT USED IN CALCULATION OF PROBABILITY
C MP: MODE PLUS ONE, THE LOWER INDEX FOR EXPLICIT CALCULATION
C OF F WHEN IX IS GREATER THAN M
C IX1: CANDIDATE VALUE PLUS ONE, THE LOWER INDEX FOR EXPLICIT
C CALCULATION OF F WHEN IX IS LESS THAN M
C I: INDEX FOR EXPLICIT CALCULATION OF F FOR BTPE
C AMAXP: MAXIMUM ERROR OF THE LOGARITHM OF NORMAL BOUND
C YNORM: LOGARITHM OF NORMAL BOUND
C ALV: NATURAL LOGARITHM OF THE ACCEPT/REJECT VARIATE V
C
C X1,F1,Z,W,Z2,X2,F2, AND W2 ARE TEMPORARY VARIABLES TO BE
C USED IN THE FINAL ACCEPT/REJECT TEST
C
C QN: PROBABILITY OF NO SUCCESS IN N TRIALS
C
C REMARK
C IX AND JX COULD LOGICALLY BE THE SAME VARIABLE, WHICH WOULD
C SAVE A MEMORY POSITION AND A LINE OF CODE. HOWEVER, SOME
C COMPILERS (E.G.,CDC MNF) OPTIMIZE BETTER WHEN THE ARGUMENTS
C ARE NOT INVOLVED.
C
C ISEED NEEDS TO BE DOUBLE PRECISION IF THE IMSL ROUTINE
C GGUBFS IS USED TO GENERATE UNIFORM RANDOM NUMBER, OTHERWISE
C TYPE OF ISEED SHOULD BE DICTATED BY THE UNIFORM GENERATOR
C
C**********************************************************************
C
C
C
C*****DETERMINE APPROPRIATE ALGORITHM AND WHETHER SETUP IS NECESSARY
C
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION pp
INTEGER n
C ..
C .. Local Scalars ..
DOUBLE PRECISION al,alv,amaxp,c,f,f1,f2,ffm,fm,g,p,p1,p2,p3,p4,
+ psave,q,qn,r,u,
+ v,w,w2,x,x1,x2,xl,xll,xlr,xm,xnp,xnpq,xr,ynorm,z,z2
INTEGER i,ix,ix1,k,m,mp,nsave
C ..
C .. External Functions ..
DOUBLE PRECISION ranf
EXTERNAL ranf
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,log,dmin1,iabs,int,sqrt
C JJV ..
C JJV .. Save statement ..
SAVE p,q,m,fm,xnp,xnpq,p1,xm,xl,xr,c,xll,xlr,p2,p3,p4,qn,r,g,
+ psave,nsave
C JJV I am including the variables in data statements
C ..
C .. Data statements ..
C JJV made these ridiculous starting values - the hope is that
C JJV no one will call this the first time with them as args
DATA psave,nsave/-1.0E37,-214748365/
C ..
C .. Executable Statements ..
IF (pp.NE.psave) GO TO 10
IF (n.NE.nsave) GO TO 20
IF (xnp-30.) 150,30,30
C
C*****SETUP, PERFORM ONLY WHEN PARAMETERS CHANGE
C
C JJV added the argument checker - involved only renaming 10
C JJV and 20 to the checkers and adding checkers
C JJV Only remaining problem - if called initially with the
C JJV initial values of psave and nsave, it will hang
10 continue
psave = pp
p = dmin1(psave,1.-psave)
q = 1. - p
20 continue
xnp = n*p
nsave = n
IF (xnp.LT.30.) GO TO 140
ffm = xnp + p
m = ffm
fm = m
xnpq = xnp*q
p1 = int(2.195*sqrt(xnpq)-4.6*q) + 0.5
xm = fm + 0.5
xl = xm - p1
xr = xm + p1
c = 0.134 + 20.5/ (15.3+fm)
al = (ffm-xl)/ (ffm-xl*p)
xll = al* (1.+.5*al)
al = (xr-ffm)/ (xr*q)
xlr = al* (1.+.5*al)
p2 = p1* (1.+c+c)
p3 = p2 + c/xll
p4 = p3 + c/xlr
C WRITE(6,100) N,P,P1,P2,P3,P4,XL,XR,XM,FM
C 100 FORMAT(I15,4F18.7/5F18.7)
C
C*****GENERATE VARIATE
C
30 u = ranf()*p4
v = ranf()
C
C TRIANGULAR REGION
C
IF (u.GT.p1) GO TO 40
ix = xm - p1*v + u
GO TO 170
C
C PARALLELOGRAM REGION
C
40 IF (u.GT.p2) GO TO 50
x = xl + (u-p1)/c
v = v*c + 1. - abs(xm-x)/p1
IF (v.GT.1. .OR. v.LE.0.) GO TO 30
ix = x
GO TO 70
C
C LEFT TAIL
C
50 IF (u.GT.p3) GO TO 60
ix = xl + log(v)/xll
IF (ix.LT.0) GO TO 30
v = v* (u-p2)*xll
GO TO 70
C
C RIGHT TAIL
C
60 ix = xr - log(v)/xlr
IF (ix.GT.n) GO TO 30
v = v* (u-p3)*xlr
C
C*****DETERMINE APPROPRIATE WAY TO PERFORM ACCEPT/REJECT TEST
C
70 k = iabs(ix-m)
IF (k.GT.20 .AND. k.LT.xnpq/2-1) GO TO 130
C
C EXPLICIT EVALUATION
C
f = 1.0
r = p/q
g = (n+1)*r
IF (m-ix) 80,120,100
80 mp = m + 1
DO 90 i = mp,ix
f = f* (g/i-r)
90 CONTINUE
GO TO 120
100 ix1 = ix + 1
DO 110 i = ix1,m
f = f/ (g/i-r)
110 CONTINUE
120 IF (v-f) 170,170,30
C
C SQUEEZING USING UPPER AND LOWER BOUNDS ON LOG(F(X))
C
130 amaxp = (k/xnpq)* ((k* (k/3.+.625)+.1666666666666)/xnpq+.5)
ynorm = -k*k/ (2.*xnpq)
alv = log(v)
IF (alv.LT.ynorm-amaxp) GO TO 170
IF (alv.GT.ynorm+amaxp) GO TO 30
C
C STIRLING'S FORMULA TO MACHINE ACCURACY FOR
C THE FINAL ACCEPTANCE/REJECTION TEST
C
x1 = ix + 1
f1 = fm + 1.
z = n + 1 - fm
w = n - ix + 1.
z2 = z*z
x2 = x1*x1
f2 = f1*f1
w2 = w*w
IF (alv- (xm*log(f1/x1)+ (n-m+.5)*log(z/w)+ (ix-
+ m)*log(w*p/ (x1*q))+ (13860.- (462.- (132.- (99.-
+ 140./f2)/f2)/f2)/f2)/f1/166320.+ (13860.- (462.- (132.- (99.-
+ 140./z2)/z2)/z2)/z2)/z/166320.+ (13860.- (462.- (132.- (99.-
+ 140./x2)/x2)/x2)/x2)/x1/166320.+ (13860.- (462.- (132.- (99.-
+ 140./w2)/w2)/w2)/w2)/w/166320.)) 170,170,30
C
C INVERSE CDF LOGIC FOR MEAN LESS THAN 30
C
140 qn = q**n
r = p/q
g = r* (n+1)
150 ix = 0
f = qn
u = ranf()
160 IF (u.LT.f) GO TO 170
IF (ix.GT.110) GO TO 150
u = u - f
ix = ix + 1
f = f* (g/ix-r)
GO TO 160
170 IF (psave.GT.0.5) ix = n - ix
ignbin = ix
RETURN
END
|