1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
INTEGER FUNCTION ignpoi(mu)
C**********************************************************************
C
C INTEGER FUNCTION IGNPOI( MU )
C
C GENerate POIsson random deviate
C
C
C Function
C
C
C Generates a single random deviate from a Poisson
C distribution with mean MU.
C
C
C Arguments
C
C
C MU --> The mean of the Poisson distribution from which
C a random deviate is to be generated.
C DOUBLE PRECISION MU
C JJV (MU >= 0.0)
C
C IGNPOI <-- The random deviate.
C INTEGER IGNPOI (non-negative)
C
C
C Method
C
C
C Renames KPOIS from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C
C Ahrens, J.H. and Dieter, U.
C Computer Generation of Poisson Deviates
C From Modified Normal Distributions.
C ACM Trans. Math. Software, 8, 2
C (June 1982),163-179
C
C**********************************************************************
C**********************************************************************C
C**********************************************************************C
C C
C C
C P O I S S O N DISTRIBUTION C
C C
C C
C**********************************************************************C
C**********************************************************************C
C C
C FOR DETAILS SEE: C
C C
C AHRENS, J.H. AND DIETER, U. C
C COMPUTER GENERATION OF POISSON DEVIATES C
C FROM MODIFIED NORMAL DISTRIBUTIONS. C
C ACM TRANS. MATH. SOFTWARE, 8,2 (JUNE 1982), 163 - 179. C
C C
C (SLIGHTLY MODIFIED VERSION OF THE PROGRAM IN THE ABOVE ARTICLE) C
C C
C**********************************************************************C
C
C INTEGER FUNCTION IGNPOI(IR,MU)
C
C INPUT: IR=CURRENT STATE OF BASIC RANDOM NUMBER GENERATOR
C MU=MEAN MU OF THE POISSON DISTRIBUTION
C OUTPUT: IGNPOI=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION
C
C
C
C MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR CASE B
C TABLES: COEFFICIENTS A0-A7 FOR STEP F. FACTORIALS FACT
C COEFFICIENTS A(K) - FOR PX = FK*V*V*SUM(A(K)*V**K)-DEL
C
C
C
C SEPARATION OF CASES A AND B
C
C .. Scalar Arguments ..
DOUBLE PRECISION mu
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,a1,a2,a3,a4,a5,a6,a7,b1,b2,c,c0,c1,c2,c3,
$ d,del,difmuk,e,
$ fk,fx,fy,g,muold,muprev,omega,p,p0,px,py,q,s,t,u,v,x,xx
C JJV I added a variable 'll' here - it is the 'l' for CASE A
INTEGER j,k,kflag,l,ll,m
C ..
C .. Local Arrays ..
DOUBLE PRECISION fact(10),pp(35)
C ..
C .. External Functions ..
DOUBLE PRECISION ranf,sexpo,snorm
EXTERNAL ranf,sexpo,snorm
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,log,exp,float,idint,max0,min0,dsign,sqrt
C ..
C JJV added this for case: mu unchanged
C .. Save statement ..
SAVE s, d, l, ll, omega, c3, c2, c1, c0, c, m, p, q, p0,
+ a0, a1, a2, a3, a4, a5, a6, a7, fact, muprev, muold
C ..
C JJV end addition - I am including vars in Data statements
C .. Data statements ..
C JJV changed initial values of MUPREV and MUOLD to -1.0E37
C JJV if no one calls IGNPOI with MU = -1.0E37 the first time,
C JJV the code shouldn't break
DATA muprev,muold/-1.0E37,-1.0E37/
DATA a0,a1,a2,a3,a4,a5,a6,a7/-.5,.3333333,-.2500068,.2000118,
+ -.1661269,.1421878,-.1384794,.1250060/
DATA fact/1.,1.,2.,6.,24.,120.,720.,5040.,40320.,362880./
C ..
C .. Executable Statements ..
IF (mu.EQ.muprev) GO TO 10
IF (mu.LT.10.0) GO TO 120
C
C C A S E A. (RECALCULATION OF S,D,LL IF MU HAS CHANGED)
C
C JJV This is the case where I changed 'l' to 'll'
C JJV Here 'll' is set once and used in a comparison once
muprev = mu
s = sqrt(mu)
d = 6.0*mu*mu
C
C THE POISSON PROBABILITIES PK EXCEED THE DISCRETE NORMAL
C PROBABILITIES FK WHENEVER K >= M(MU). LL=IDINT(MU-1.1484)
C IS AN UPPER BOUND TO M(MU) FOR ALL MU >= 10 .
C
ll = idint(mu-1.1484)
C
C STEP N. NORMAL SAMPLE - SNORM(IR) FOR STANDARD NORMAL DEVIATE
C
10 g = mu + s*snorm()
IF (g.LT.0.0) GO TO 20
ignpoi = idint(g)
C
C STEP I. IMMEDIATE ACCEPTANCE IF IGNPOI IS LARGE ENOUGH
C
IF (ignpoi.GE.ll) RETURN
C
C STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (0,1)-SAMPLE U
C
fk = dble(ignpoi)
difmuk = mu - fk
u = ranf()
IF (d*u.GE.difmuk*difmuk*difmuk) RETURN
C
C STEP P. PREPARATIONS FOR STEPS Q AND H.
C (RECALCULATIONS OF PARAMETERS IF NECESSARY)
C .3989423=(2*PI)**(-.5) .416667E-1=1./24. .1428571=1./7.
C THE QUANTITIES B1, B2, C3, C2, C1, C0 ARE FOR THE HERMITE
C APPROXIMATIONS TO THE DISCRETE NORMAL PROBABILITIES FK.
C C=.1069/MU GUARANTEES MAJORIZATION BY THE 'HAT'-FUNCTION.
C
20 IF (mu.EQ.muold) GO TO 30
muold = mu
omega = .3989423/s
b1 = .4166667E-1/mu
b2 = .3*b1*b1
c3 = .1428571*b1*b2
c2 = b2 - 15.*c3
c1 = b1 - 6.*b2 + 45.*c3
c0 = 1. - b1 + 3.*b2 - 15.*c3
c = .1069/mu
30 IF (g.LT.0.0) GO TO 50
C
C 'SUBROUTINE' F IS CALLED (KFLAG=0 FOR CORRECT RETURN)
C
kflag = 0
GO TO 70
C
C STEP Q. QUOTIENT ACCEPTANCE (RARE CASE)
C
40 IF (fy-u*fy.LE.py*exp(px-fx)) RETURN
C
C STEP E. EXPONENTIAL SAMPLE - SEXPO(IR) FOR STANDARD EXPONENTIAL
C DEVIATE E AND SAMPLE T FROM THE LAPLACE 'HAT'
C (IF T <= -.6744 THEN PK < FK FOR ALL MU >= 10.)
C
50 e = sexpo()
u = ranf()
u = u + u - 1.0
t = 1.8d0 + dsign(e,u)
IF (t.LE. (-.6744)) GO TO 50
ignpoi = idint(mu+s*t)
fk = dble(ignpoi)
difmuk = mu - fk
C
C 'SUBROUTINE' F IS CALLED (KFLAG=1 FOR CORRECT RETURN)
C
kflag = 1
GO TO 70
C
C STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION)
C
60 IF (c*abs(u).GT.py*exp(px+e)-fy*exp(fx+e)) GO TO 50
RETURN
C
C STEP F. 'SUBROUTINE' F. CALCULATION OF PX,PY,FX,FY.
C CASE IGNPOI .LT. 10 USES FACTORIALS FROM TABLE FACT
C
70 IF (ignpoi.GE.10) GO TO 80
px = -mu
py = mu**ignpoi/fact(ignpoi+1)
GO TO 110
C
C CASE IGNPOI .GE. 10 USES POLYNOMIAL APPROXIMATION
C A0-A7 FOR ACCURACY WHEN ADVISABLE
C .8333333E-1=1./12. .3989423=(2*PI)**(-.5)
C
80 del = .8333333E-1/fk
del = del - 4.8*del*del*del
v = difmuk/fk
IF (abs(v).LE.0.25) GO TO 90
px = fk*log(1.0+v) - difmuk - del
GO TO 100
90 px = fk*v*v* (((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v+a0) -
+ del
100 py = .3989423/sqrt(fk)
110 x = (0.5-difmuk)/s
xx = x*x
fx = -0.5*xx
fy = omega* (((c3*xx+c2)*xx+c1)*xx+c0)
IF (kflag) 40,40,60
C
C C A S E B. (START NEW TABLE AND CALCULATE P0 IF NECESSARY)
C
C JJV changed MUPREV assignment from 0.0 to initial value
120 muprev = -1.0E37
C Jpc 1999: the next lines seams to produce a bug
C and I finaly commented them out
C IF (mu.EQ.muold) GO TO 130
C JJV added argument checker here
C JJV added line label here
C 125 muold = mu
m = max0(1,idint(mu))
l = 0
p = exp(-mu)
q = p
p0 = p
C
C STEP U. UNIFORM SAMPLE FOR INVERSION METHOD
C
130 u = ranf()
ignpoi = 0
IF (u.LE.p0) RETURN
C
C STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE
C PP-TABLE OF CUMULATIVE POISSON PROBABILITIES
C (0.458=PP(9) FOR MU=10)
C
IF (l.EQ.0) GO TO 150
j = 1
IF (u.GT.0.458) j = min0(l,m)
DO 140 k = j,l
IF (u.LE.pp(k)) GO TO 180
140 CONTINUE
IF (l.EQ.35) GO TO 130
C
C STEP C. CREATION OF NEW POISSON PROBABILITIES P
C AND THEIR CUMULATIVES Q=PP(K)
C
150 l = l + 1
DO 160 k = l,35
p = p*mu/float(k)
q = q + p
pp(k) = q
IF (u.LE.q) GO TO 170
160 CONTINUE
l = 35
GO TO 130
170 l = k
180 ignpoi = k
RETURN
END
|