1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
DOUBLE PRECISION FUNCTION sgamma(a)
C**********************************************************************C
C C
C C
C (STANDARD-) G A M M A DISTRIBUTION C
C C
C C
C**********************************************************************C
C**********************************************************************C
C C
C PARAMETER A >= 1.0 ! C
C C
C**********************************************************************C
C C
C FOR DETAILS SEE: C
C C
C AHRENS, J.H. AND DIETER, U. C
C GENERATING GAMMA VARIATES BY A C
C MODIFIED REJECTION TECHNIQUE. C
C COMM. ACM, 25,1 (JAN. 1982), 47 - 54. C
C C
C STEP NUMBERS CORRESPOND TO ALGORITHM 'GD' IN THE ABOVE PAPER C
C (STRAIGHTFORWARD IMPLEMENTATION) C
C C
C Modified by Barry W. Brown, Feb 3, 1988 to use RANF instead of C
C SUNIF. The argument IR thus goes away. C
C C
C**********************************************************************C
C C
C PARAMETER 0.0 < A < 1.0 ! C
C C
C**********************************************************************C
C C
C FOR DETAILS SEE: C
C C
C AHRENS, J.H. AND DIETER, U. C
C COMPUTER METHODS FOR SAMPLING FROM GAMMA, C
C BETA, POISSON AND BINOMIAL DISTRIBUTIONS. C
C COMPUTING, 12 (1974), 223 - 246. C
C C
C (ADAPTED IMPLEMENTATION OF ALGORITHM 'GS' IN THE ABOVE PAPER) C
C C
C**********************************************************************C
C
C
C INPUT: A =PARAMETER (MEAN) OF THE STANDARD GAMMA DISTRIBUTION
C OUTPUT: SGAMMA = SAMPLE FROM THE GAMMA-(A)-DISTRIBUTION
C
C COEFFICIENTS Q(K) - FOR Q0 = SUM(Q(K)*A**(-K))
C COEFFICIENTS A(K) - FOR Q = Q0+(T*T/2)*SUM(A(K)*V**K)
C COEFFICIENTS E(K) - FOR EXP(Q)-1 = SUM(E(K)*Q**K)
C
C .. Scalar Arguments ..
DOUBLE PRECISION a
C ..
C .. Local Scalars .. (JJV added B0 to fix rare and subtle bug)
DOUBLE PRECISION a1,a2,a3,a4,a5,a6,a7,aa,aaa,b,b0,c,d,e,e1,e2,e3,
+ e4,e5,p,q,q0,
+ q1,q2,q3,q4,q5,q6,q7,r,s,s2,si,sqrt32,t,u,v,w,x
C ..
C .. External Functions ..
DOUBLE PRECISION ranf,sexpo,snorm
EXTERNAL ranf,sexpo,snorm
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,log,exp,sign,sqrt
C ..
C .. Save statement ..
C JJV added Save statement for vars in Data satatements
SAVE aa,aaa,s2,s,d,q0,b,si,c,q1,q2,q3,q4,q5,q6,q7,a1,a2,a3,a4,a5,
+ a6,a7,e1,e2,e3,e4,e5,sqrt32
C ..
C .. Data statements ..
C
C PREVIOUS A PRE-SET TO ZERO - AA IS A', AAA IS A"
C SQRT32 IS THE SQUAREROOT OF 32 = 5.656854249492380
C
DATA q1,q2,q3,q4,q5,q6,q7/.04166669,.02083148,.00801191,.00144121,
+ -.00007388,.00024511,.00024240/
DATA a1,a2,a3,a4,a5,a6,a7/.3333333,-.2500030,.2000062,-.1662921,
+ .1423657,-.1367177,.1233795/
DATA e1,e2,e3,e4,e5/1.,.4999897,.1668290,.0407753,.0102930/
DATA aa/0.0/,aaa/0.0/,sqrt32/5.656854/
C ..
C .. Executable Statements ..
C
IF (a.EQ.aa) GO TO 10
IF (a.LT.1.0) GO TO 130
C
C STEP 1: RECALCULATIONS OF S2,S,D IF A HAS CHANGED
C
aa = a
s2 = a - 0.5
s = sqrt(s2)
d = sqrt32 - 12.0*s
C
C STEP 2: T=STANDARD NORMAL DEVIATE,
C X=(S,1/2)-NORMAL DEVIATE.
C IMMEDIATE ACCEPTANCE (I)
C
10 t = snorm()
x = s + 0.5*t
sgamma = x*x
IF (t.GE.0.0) RETURN
C
C STEP 3: U= 0,1 -UNIFORM SAMPLE. SQUEEZE ACCEPTANCE (S)
C
u = ranf()
IF (d*u.LE.t*t*t) RETURN
C
C STEP 4: RECALCULATIONS OF Q0,B,SI,C IF NECESSARY
C
IF (a.EQ.aaa) GO TO 40
aaa = a
r = 1.0/a
q0 = ((((((q7*r+q6)*r+q5)*r+q4)*r+q3)*r+q2)*r+q1)*r
C
C APPROXIMATION DEPENDING ON SIZE OF PARAMETER A
C THE CONSTANTS IN THE EXPRESSIONS FOR B, SI AND
C C WERE ESTABLISHED BY NUMERICAL EXPERIMENTS
C
IF (a.LE.3.686) GO TO 30
IF (a.LE.13.022) GO TO 20
C
C CASE 3: A .GT. 13.022
C
b = 1.77
si = .75
c = .1515/s
GO TO 40
C
C CASE 2: 3.686 .LT. A .LE. 13.022
C
20 b = 1.654 + .0076*s2
si = 1.68/s + .275
c = .062/s + .024
GO TO 40
C
C CASE 1: A .LE. 3.686
C
30 b = .463 + s + .178*s2
si = 1.235
c = .195/s - .079 + .16*s
C
C STEP 5: NO QUOTIENT TEST IF X NOT POSITIVE
C
40 IF (x.LE.0.0) GO TO 70
C
C STEP 6: CALCULATION OF V AND QUOTIENT Q
C
v = t/ (s+s)
IF (abs(v).LE.0.25) GO TO 50
q = q0 - s*t + 0.25*t*t + (s2+s2)*log(1.0+v)
GO TO 60
50 q = q0 + 0.5*t*t* ((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v
C
C STEP 7: QUOTIENT ACCEPTANCE (Q)
C
60 IF (log(1.0-u).LE.q) RETURN
C
C STEP 8: E=STANDARD EXPONENTIAL DEVIATE
C U= 0,1 -UNIFORM DEVIATE
C T=(B,SI)-DOUBLE EXPONENTIAL (LAPLACE) SAMPLE
C
70 e = sexpo()
u = ranf()
u = u + u - 1.0
t = b + sign(si*e,u)
C
C STEP 9: REJECTION IF T .LT. TAU(1) = -.71874483771719
C
80 IF (t.LT. (-.7187449)) GO TO 70
C
C STEP 10: CALCULATION OF V AND QUOTIENT Q
C
v = t/ (s+s)
IF (abs(v).LE.0.25) GO TO 90
q = q0 - s*t + 0.25*t*t + (s2+s2)*log(1.0+v)
GO TO 100
90 q = q0 + 0.5*t*t* ((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v
C
C STEP 11: HAT ACCEPTANCE (H) (IF Q NOT POSITIVE GO TO STEP 8)
C
100 IF (q.LE.0.0) GO TO 70
IF (q.LE.0.5) GO TO 110
C
C JJV modified the code through line 125 to handle large Q case
C
IF (q.LT.15.0) GO TO 105
C
C JJV Here Q is large enough that Q = log(exp(Q) - 1.0) (for DOUBLE PRECISION Q)
C JJV so reformulate test at 120 in terms of one EXP, if not too big
C JJV 87.49823 is close to the largest DOUBLE PRECISION which can be
C JJV exponentiated (87.49823 = log(1.0E38))
C
IF ((q+e-0.5*t*t).GT.87.49823) GO TO 125
IF (c*abs(u).GT.exp(q+e-0.5*t*t)) GO TO 70
GO TO 125
105 w = exp(q) - 1.0
GO TO 120
110 w = ((((e5*q+e4)*q+e3)*q+e2)*q+e1)*q
C
C IF T IS REJECTED, SAMPLE AGAIN AT STEP 8
C
120 IF (c*abs(u).GT.w*exp(e-0.5*t*t)) GO TO 70
125 x = s + 0.5*t
sgamma = x*x
RETURN
C
C ALTERNATE METHOD FOR PARAMETERS A BELOW 1 (.3678794=EXP(-1.))
C
C JJV changed B to B0 (which was added to declarations for this)
C JJV in 130 to END to fix rare and subtle bug.
C JJV Line: '130 aa = 0.0' was removed (unnecessary, wasteful).
C JJV Reasons: the state of AA only serves to tell the A .GE. 1.0
C JJV case if certain A-dependant constants need to be recalculated.
C JJV The A .LT. 1.0 case (here) no longer changes any of these, and
C JJV the recalculation of B (which used to change with an
C JJV A .LT. 1.0 call) is governed by the state of AAA anyway.
C
130 b0 = 1.0 + .3678794*a
140 p = b0*ranf()
IF (p.GE.1.0) GO TO 150
sgamma = exp(log(p)/a)
IF (sexpo().LT.sgamma) GO TO 140
RETURN
150 sgamma = -log((b0-p)/a)
IF (sexpo().LT. (1.0-a)*log(sgamma)) GO TO 140
RETURN
END
|