1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#if WIN32
#include <stdio.h> /* printf */
#endif
/* Table of constant values */
static double c_b4 = 1.;
static double c_b5 = 0.;
#define max(a,b) ((a) >= (b) ? (a) : (b))
int dgemm();
int dmmul(double *a, int *na, double *b, int *nb, double *c__,
int *nc, int *l, int *m, int *n)
{
int a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset;
/* PURPOSE */
/* computes the matrix product C = A * B */
/* C = A * B */
/* (l,n) (l,m) * (m,n) */
/* PARAMETERS */
/* input */
/* ----- */
/* A : (double) array (l, m) with leading dim na */
/* B : (double) array (m, n) with leading dim nb */
/* na, nb, nc, l, m, n : integers */
/* output */
/* ------ */
/* C : (double) array (l, n) with leading dim nc */
/* NOTE */
/* (original version substituted by a call to the blas dgemm) */
/* Parameter adjustments */
a_dim1 = *na;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
c_dim1 = *nc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
b_dim1 = *nb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
/* Function Body */
dgemm("n", "n", l, n, m, &c_b4, &a[a_offset], na, &b[b_offset], nb, &
c_b5, &c__[c_offset], nc);
return 0;
} /* dmmul */
int dgemm(char *transa, char *transb, int *m, int *n, int *k, double *alpha,
double *a, int *lda, double *b, int *ldb,double *beta, double *c,
int *ldc)
{
/* System generated locals */
int i__1, i__2, i__3;
/* Local variables */
static int info;
static long int nota, notb;
static double temp;
static int i, j, l, ncola;
long int lsame(char *, char *);
static int nrowa, nrowb;
int xerbla(char *, int *);
/* .. Scalar Arguments .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEMM performs one of the matrix-matrix operations */
/* C := alpha*op( A )*op( B ) + beta*C, */
/* where op( X ) is one of */
/* op( X ) = X or op( X ) = X', */
/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
/* Parameters */
/* ========== */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n', op( A ) = A. */
/* TRANSA = 'T' or 't', op( A ) = A'. */
/* TRANSA = 'C' or 'c', op( A ) = A'. */
/* Unchanged on exit. */
/* TRANSB - CHARACTER*1. */
/* On entry, TRANSB specifies the form of op( B ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSB = 'N' or 'n', op( B ) = B. */
/* TRANSB = 'T' or 't', op( B ) = B'. */
/* TRANSB = 'C' or 'c', op( B ) = B'. */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of the matrix */
/* op( A ) and of the matrix C. M must be at least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of the matrix */
/* op( B ) and the number of columns of the matrix C. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of columns of the matrix */
/* op( A ) and the number of rows of the matrix op( B ). K must */
/* be at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
/* k when TRANSA = 'N' or 'n', and is m otherwise. */
/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
/* part of the array A must contain the matrix A, otherwise */
/* the leading k by m part of the array A must contain the */
/* matrix A. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
/* least max( 1, k ). */
/* Unchanged on exit. */
/* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */
/* n when TRANSB = 'N' or 'n', and is k otherwise. */
/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
/* part of the array B must contain the matrix B, otherwise */
/* the leading n by k part of the array B must contain the */
/* matrix B. */
/* Unchanged on exit. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
/* LDB must be at least max( 1, k ), otherwise LDB must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* BETA - DOUBLE PRECISION. */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then C need not be set on input. */
/* Unchanged on exit. */
/* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
/* Before entry, the leading m by n part of the array C must */
/* contain the matrix C, except when beta is zero, in which */
/* case C need not be set on entry. */
/* On exit, the array C is overwritten by the m by n matrix */
/* ( alpha*op( A )*op( B ) + beta*C ). */
/* LDC - INTEGER. */
/* On entry, LDC specifies the first dimension of C as declared */
/* in the calling (sub) program. LDC must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/* .. External Subroutines .. */
/* .. Intrinsic Functions .. */
/* .. Local Scalars .. */
/* .. Parameters .. */
/* .. */
/* .. Executable Statements .. */
/* Set NOTA and NOTB as true if A and B respectively are not */
/* transposed and set NROWA, NCOLA and NROWB as the number of rows */
/* and columns of A and the number of rows of B respectively. */
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]
#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]
nota = lsame(transa, "N");
notb = lsame(transb, "N");
if (nota) {
nrowa = *m;
ncola = *k;
} else {
nrowa = *k;
ncola = *m;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
/* Test the input parameters. */
info = 0;
if (! nota && ! lsame(transa, "C") && ! lsame(transa, "T")) {
info = 1;
} else if (! notb && ! lsame(transb, "C") && ! lsame(transb,"T")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
xerbla("DGEMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
return 0;
}
/* And if alpha.eq.zero. */
if (*alpha == 0.) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (notb) {
if (nota) {
/* Form C := alpha*A*B + beta*C. */
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L50: */
}
} else if (*beta != 1.) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L60: */
}
}
i__2 = *k;
for (l = 1; l <= *k; ++l) {
if (B(l,j) != 0.) {
temp = *alpha * B(l,j);
i__3 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) += temp * A(i,l);
/* L70: */
}
}
/* L80: */
}
/* L90: */
}
} else {
/* Form C := alpha*A'*B + beta*C */
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
temp = 0.;
i__3 = *k;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * B(l,j);
/* L100: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L110: */
}
/* L120: */
}
}
} else {
if (nota) {
/* Form C := alpha*A*B' + beta*C */
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L130: */
}
} else if (*beta != 1.) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L140: */
}
}
i__2 = *k;
for (l = 1; l <= *k; ++l) {
if (B(j,l) != 0.) {
temp = *alpha * B(j,l);
i__3 = *m;
for (i = 1; i <= *m; ++i) {
C(i,j) += temp * A(i,l);
/* L150: */
}
}
/* L160: */
}
/* L170: */
}
} else {
/* Form C := alpha*A'*B' + beta*C */
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
temp = 0.;
i__3 = *k;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * B(j,l);
/* L180: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L190: */
}
/* L200: */
}
}
}
return 0;
/* End of DGEMM . */
} /* dgemm */
long int lsame(char *ca, char *cb)
{
/* System generated locals */
long int ret_val;
/* Local variables */
static int inta, intb, zcode;
/* -- LAPACK auxiliary routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* January 31, 1994 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
/* case. */
/* Arguments */
/* ========= */
/* CA (input) CHARACTER*1 */
/* CB (input) CHARACTER*1 */
/* CA and CB specify the single characters to be compared. */
/* ===================================================================== */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Executable Statements .. */
/* Test if the characters are equal */
ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
if (ret_val) {
return ret_val;
}
/* Now test for equivalence if both characters are alphabetic. */
zcode = 'Z';
/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
/* machines, on which ICHAR returns a value with bit 8 set. */
/* ICHAR('A') on Prime machines returns 193 which is the same as */
/* ICHAR('A') on an EBCDIC machine. */
inta = *(unsigned char *)ca;
intb = *(unsigned char *)cb;
if (zcode == 90 || zcode == 122) {
/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
/* upper case 'Z'. */
if (inta >= 97 && inta <= 122) {
inta += -32;
}
if (intb >= 97 && intb <= 122) {
intb += -32;
}
} else if (zcode == 233 || zcode == 169) {
/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
/* upper case 'Z'. */
if (inta >= 129 && inta <= 137 || inta >= 145 && inta <= 153 || inta
>= 162 && inta <= 169) {
inta += 64;
}
if (intb >= 129 && intb <= 137 || intb >= 145 && intb <= 153 || intb
>= 162 && intb <= 169) {
intb += 64;
}
} else if (zcode == 218 || zcode == 250) {
/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
/* plus 128 of either lower or upper case 'Z'. */
if (inta >= 225 && inta <= 250) {
inta += -32;
}
if (intb >= 225 && intb <= 250) {
intb += -32;
}
}
ret_val = inta == intb;
/* RETURN */
/* End of LSAME */
return ret_val;
} /* lsame */
int xerbla(char *srname, int *info)
{
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* XERBLA is an error handler for the LAPACK routines. */
/* It is called by an LAPACK routine if an input parameter has an */
/* invalid value. A message is printed and execution stops. */
/* Installers may consider modifying the STOP statement in order to */
/* call system-specific exception-handling facilities. */
/* Arguments */
/* ========= */
/* SRNAME (input) CHARACTER*6 */
/* The name of the routine which called XERBLA. */
/* INFO (input) INTEGER */
/* The position of the invalid parameter in the parameter list */
/* of the calling routine. */
/* ===================================================================== */
printf("** On entry to %6s, parameter number %2i had an illegal value\n",
srname, *info);
/* End of XERBLA */
return 0;
} /* xerbla */
|