File: remez.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (295 lines) | stat: -rw-r--r-- 7,348 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
C/MEMBR ADD NAME=REMEZ,SSI=0
      subroutine remez(ngr,nfc,iext,ad,x,y,des,grid,wt,a,p,q,alpha)
c!purpose
c   this subroutine implements the remez exchange algorithm
c   for the weighted chebyshev approximation of a continuous
c   function with a sum of cosines.  inputs to the subroutine
c   are a dense grid which replaces the frequency axis, the
c   desired function on this grid, the weight function on the
c   grid, the number of cosines, and an initial guess of the
c   extremal frequencies.  the program minimizes the chebyshev
c   error by determining the best location of the extremal
c   frequencies (points of maximum error) and then calculates
c   the coefficients of the best approximation.
c!calling sequence
c     subroutine remez(ngr,nfc,iext,ad,x,y,des,grid,wt,a,p,q,alpha)
c   dimensioning of arrays in calling program is as follows:
c         working vectors   ad,x,y,a,p,q:   nfc+2
c         input vectors     des,grid,wt:    ngr
c         input vector      iext:           nfc+2
c         output vector     alpha:          nfc+2
c!
      dimension iext(*),ad(*),alpha(*),x(*),y(*)
      dimension des(*),grid(*),wt(*)
      dimension a(*),p(*),q(*)
      double precision pi2,dnum,dden,dtemp,a,p,q
      double precision dk,dak
      double precision ad,dev,x,y
      double precision gee,dgee01
      double precision alpha
      common /rem001/ pi2,dev,nfcns,ngrid
      common /oops/niter,iout
c
c  the program allows a maximum number of iterations of 25
c
      itrmax=25
      ngrid=ngr
      nfcns=nfc
      pi=4.0d+0*atan(1.0d+0)
      pi2=2.0d+0*pi
      devl=-1.0d+0
      nz=nfcns+1
      nzz=nfcns+2
      niter=0
  100 continue
      iext(nzz)=ngrid+1
      niter=niter+1
      if(niter.gt.itrmax) go to 400
      do 110 j=1,nz
      jxt=iext(j)
      dtemp=grid(jxt)
      dtemp=cos(dtemp*pi2)
  110 x(j)=dtemp
      jet=(nfcns-1)/15+1
      do 120 j=1,nz
  120 ad(j)=dgee01(j,nz,jet,x)
      dnum=0.0d+0
      dden=0.0d+0
      k=1
      do 130 j=1,nz
      l=iext(j)
      dtemp=ad(j)*des(l)
      dnum=dnum+dtemp
      dtemp=dble(k)*ad(j)/wt(l)
      dden=dden+dtemp
  130 k=-k
      dev=dnum/dden
c      write(6,131) dev
c  131 format(1x,12hdeviation = ,f12.9)
      nu=1
      if(dev.gt.0.0d+0) nu=-1
      dev=-dble(nu)*dev
      k=nu
      do 140 j=1,nz
      l=iext(j)
      dtemp=dble(k)*dev/wt(l)
      y(j)=des(l)+dtemp
  140 k=-k
      if(dev.gt.devl) go to 150
      call ouch
      go to 400
  150 devl=dev
      jchnge=0
      k1=iext(1)
      knz=iext(nz)
      klow=0
      nut=-nu
      j=1
c
c  search for the extremal frequencies of the best
c  approximation
c
  200 if(j.eq.nzz) ynz=comp
      if(j.ge.nzz) go to 300
      kup=iext(j+1)
      l=iext(j)+1
      nut=-nut
      if(j.eq.2) y1=comp
      comp=dev
      if(l.ge.kup) go to 220
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 220
      comp=dble(nut)*err
  210 l=l+1
      if(l.ge.kup) go to 215
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 215
      comp=dble(nut)*err
      go to 210
  215 iext(j)=l-1
      j=j+1
      klow=l-1
      jchnge=jchnge+1
      go to 200
  220 l=l-1
  225 l=l-1
      if(l.le.klow) go to 250
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.gt.0.0d+0) go to 230
      if(jchnge.le.0) go to 225
      go to 260
  230 comp=dble(nut)*err
  235 l=l-1
      if(l.le.klow) go to 240
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 240
      comp=dble(nut)*err
      go to 235
  240 klow=iext(j)
      iext(j)=l+1
      j=j+1
      jchnge=jchnge+1
      go to 200
  250 l=iext(j)+1
      if(jchnge.gt.0) go to 215
  255 l=l+1
      if(l.ge.kup) go to 260
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 255
      comp=dble(nut)*err
      go to 210
  260 klow=iext(j)
      j=j+1
      go to 200
  300 if(j.gt.nzz) go to 320
      if(k1.gt.iext(1)) k1=iext(1)
      if(knz.lt.iext(nz)) knz=iext(nz)
      nut1=nut
      nut=-nu
      l=0
      kup=k1
      comp=ynz*(1.000010d+0)
      luck=1
  310 l=l+1
      if(l.ge.kup) go to 315
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 310
      comp=dble(nut)*err
      j=nzz
      go to 210
  315 luck=6
      go to 325
  320 if(luck.gt.9) go to 350
      if(comp.gt.y1) y1=comp
      k1=iext(nzz)
  325 l=ngrid+1
      klow=knz
      nut=-nut1
      comp=y1*(1.000010d+0)
  330 l=l-1
      if(l.le.klow) go to 340
      err=gee(l,nz,ad,x,y,grid)
      err=(err-des(l))*wt(l)
      dtemp=dble(nut)*err-comp
      if(dtemp.le.0.0d+0) go to 330
      j=nzz
      comp=dble(nut)*err
      luck=luck+10
      go to 235
  340 if(luck.eq.6) go to 370
      do 345 j=1,nfcns
      nzzmj=nzz-j
      nzmj=nz-j
  345 iext(nzzmj)=iext(nzmj)
      iext(1)=k1
      go to 100
  350 kn=iext(nzz)
      do 360 j=1,nfcns
  360 iext(j)=iext(j+1)
      iext(nz)=kn
      go to 100
  370 if(jchnge.gt.0) go to 100
c
c  calculation of the coefficients of the best approximation
c  using the inverse discrete fourier transform
c
  400 continue
      nm1=nfcns-1
      fsh=1.0e-06
      gtemp=grid(1)
      x(nzz)=-2.0d+0
      cn=2*nfcns-1
      delf=1.0d+0/cn
      l=1
      kkk=0
      if(grid(1).lt.0.010d+0.and.grid(ngrid).gt.0.490d+0) kkk=1
      if(nfcns.le.3) kkk=1
      if(kkk.eq.1) go to 405
      dtemp=cos(pi2*grid(1))
      dnum=cos(pi2*grid(ngrid))
      aa=2.0d+0/(dtemp-dnum)
      bb=-(dtemp+dnum)/(dtemp-dnum)
  405 continue
      do 430 j=1,nfcns
      ft=j-1
      ft=ft*delf
      xt=cos(pi2*ft)
      if(kkk.eq.1) go to 410
      xt=(xt-bb)/aa
      xt1=sqrt(1.0d+0-xt*xt)
      ft=atan2(xt1,xt)/pi2
  410 xe=x(l)
      if(xt.gt.xe) go to 420
      if((xe-xt).lt.fsh) go to 415
      l=l+1
      go to 410
  415 a(j)=y(l)
      go to 425
  420 if((xt-xe).lt.fsh) go to 415
      grid(1)=ft
      a(j)=gee(1,nz,ad,x,y,grid)
  425 continue
      if(l.gt.1) l=l-1
  430 continue
      grid(1)=gtemp
      dden=pi2/cn
      do 510 j=1,nfcns
      dtemp=0.0d+0
      dnum=j-1
      dnum=dnum*dden
      if(nm1.lt.1) go to 505
      do 500 k=1,nm1
      dak=a(k+1)
      dk=k
  500 dtemp=dtemp+dak*cos(dnum*dk)
  505 dtemp=2.0d+0*dtemp+a(1)
  510 alpha(j)=dtemp
      do 550 j=2,nfcns
  550 alpha(j)=2.0d+0*alpha(j)/cn
      alpha(1)=alpha(1)/cn
      if(kkk.eq.1) go to 545
      p(1)=2.0d+0*alpha(nfcns)*bb+alpha(nm1)
      p(2)=2.0d+0*aa*alpha(nfcns)
      q(1)=alpha(nfcns-2)-alpha(nfcns)
      do 540 j=2,nm1
      if(j.lt.nm1) go to 515
      aa=0.5*aa
      bb=0.5*bb
  515 continue
      p(j+1)=0.0d+0
      do 520 k=1,j
      a(k)=p(k)
  520 p(k)=2.0d+0*bb*a(k)
      p(2)=p(2)+a(1)*2.0d+0*aa
      jm1=j-1
      do 525 k=1,jm1
  525 p(k)=p(k)+q(k)+aa*a(k+1)
      jp1=j+1
      do 530 k=3,jp1
  530 p(k)=p(k)+aa*a(k-1)
      if(j.eq.nm1) go to 540
      do 535 k=1,j
  535 q(k)=-a(k)
      nf1j=nfcns-1-j
      q(1)=q(1)+alpha(nf1j)
  540 continue
      do 543 j=1,nfcns
  543 alpha(j)=p(j)
  545 continue
      if(nfcns.gt.3)return
      alpha(nfcns+1)=0.0d+0
      alpha(nfcns+2)=0.0d+0
      return
      end