1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
SUBROUTINE AB01OD( STAGES, JOBU, JOBV, N, M, A, LDA, B, LDB, U,
$ LDU, V, LDV, NCONT, INDCON, KSTAIR, TOL, IWORK,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To reduce the matrices A and B using (and optionally accumulating)
C state-space and input-space transformations U and V respectively,
C such that the pair of matrices
C
C Ac = U' * A * U, Bc = U' * B * V
C
C are in upper "staircase" form. Specifically,
C
C [ Acont * ] [ Bcont ]
C Ac = [ ], Bc = [ ],
C [ 0 Auncont ] [ 0 ]
C
C and
C
C [ A11 A12 . . . A1,p-1 A1p ] [ B1 ]
C [ A21 A22 . . . A2,p-1 A2p ] [ 0 ]
C [ 0 A32 . . . A3,p-1 A3p ] [ 0 ]
C Acont = [ . . . . . . . ], Bc = [ . ],
C [ . . . . . . ] [ . ]
C [ . . . . . ] [ . ]
C [ 0 0 . . . Ap,p-1 App ] [ 0 ]
C
C where the blocks B1, A21, ..., Ap,p-1 have full row ranks and
C p is the controllability index of the pair. The size of the
C block Auncont is equal to the dimension of the uncontrollable
C subspace of the pair (A, B). The first stage of the reduction,
C the "forward" stage, accomplishes the reduction to the orthogonal
C canonical form (see SLICOT library routine AB01ND). The blocks
C B1, A21, ..., Ap,p-1 are further reduced in a second, "backward"
C stage to upper triangular form using RQ factorization. Each of
C these stages is optional.
C
C ARGUMENTS
C
C Mode Parameters
C
C STAGES CHARACTER*1
C Specifies the reduction stages to be performed as follows:
C = 'F': Perform the forward stage only;
C = 'B': Perform the backward stage only;
C = 'A': Perform both (all) stages.
C
C JOBU CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix U the state-space transformations as follows:
C = 'N': Do not form U;
C = 'I': U is internally initialized to the unit matrix (if
C STAGES <> 'B'), or updated (if STAGES = 'B'), and
C the orthogonal transformation matrix U is
C returned.
C
C JOBV CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix V the input-space transformations as follows:
C = 'N': Do not form V;
C = 'I': V is initialized to the unit matrix and the
C orthogonal transformation matrix V is returned.
C JOBV is not referenced if STAGES = 'F'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e. the order of the
C matrix A. N >= 0.
C
C M (input) INTEGER
C The actual input dimension. M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state transition matrix A to be transformed.
C If STAGES = 'B', A should be in the orthogonal canonical
C form, as returned by SLICOT library routine AB01ND.
C On exit, the leading N-by-N part of this array contains
C the transformed state transition matrix U' * A * U.
C The leading NCONT-by-NCONT part contains the upper block
C Hessenberg state matrix Acont in Ac, given by U' * A * U,
C of a controllable realization for the original system.
C The elements below the first block-subdiagonal are set to
C zero. If STAGES <> 'F', the subdiagonal blocks of A are
C triangularized by RQ factorization, and the annihilated
C elements are explicitly zeroed.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B to be transformed.
C If STAGES = 'B', B should be in the orthogonal canonical
C form, as returned by SLICOT library routine AB01ND.
C On exit with STAGES = 'F', the leading N-by-M part of
C this array contains the transformed input matrix U' * B,
C with all elements but the first block set to zero.
C On exit with STAGES <> 'F', the leading N-by-M part of
C this array contains the transformed input matrix
C U' * B * V, with all elements but the first block set to
C zero and the first block in upper triangular form.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C If STAGES <> 'B' or JOBU = 'N', then U need not be set
C on entry.
C If STAGES = 'B' and JOBU = 'I', then, on entry, the
C leading N-by-N part of this array must contain the
C transformation matrix U that reduced the pair to the
C orthogonal canonical form.
C On exit, if JOBU = 'I', the leading N-by-N part of this
C array contains the transformation matrix U that performed
C the specified reduction.
C If JOBU = 'N', the array U is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDU = 1 and
C declare this array to be U(1,1) in the calling program).
C
C LDU INTEGER
C The leading dimension of array U.
C If JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
C
C V (output) DOUBLE PRECISION array, dimension (LDV,M)
C If JOBV = 'I', then the leading M-by-M part of this array
C contains the transformation matrix V.
C If STAGES = 'F', or JOBV = 'N', the array V is not
C referenced and can be supplied as a dummy array (i.e. set
C parameter LDV = 1 and declare this array to be V(1,1) in
C the calling program).
C
C LDV INTEGER
C The leading dimension of array V.
C If STAGES <> 'F' and JOBV = 'I', LDV >= MAX(1,M);
C if STAGES = 'F' or JOBV = 'N', LDV >= 1.
C
C NCONT (input/output) INTEGER
C The order of the controllable state-space representation.
C NCONT is input only if STAGES = 'B'.
C
C INDCON (input/output) INTEGER
C The number of stairs in the staircase form (also, the
C controllability index of the controllable part of the
C system representation).
C INDCON is input only if STAGES = 'B'.
C
C KSTAIR (input/output) INTEGER array, dimension (N)
C The leading INDCON elements of this array contain the
C dimensions of the stairs, or, also, the orders of the
C diagonal blocks of Acont.
C KSTAIR is input if STAGES = 'B', and output otherwise.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance,
C defined by TOLDEF = N*N*EPS, is used instead, where EPS
C is the machine precision (see LAPACK Library routine
C DLAMCH).
C TOL is not referenced if STAGES = 'B'.
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C IWORK is not referenced if STAGES = 'B'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If STAGES <> 'B', LDWORK >= MAX(1, N + MAX(N,3*M));
C If STAGES = 'B', LDWORK >= MAX(1, M + MAX(N,M)).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Staircase reduction of the pencil [B|sI - A] is used. Orthogonal
C transformations U and V are constructed such that
C
C
C |B |sI-A * . . . * * |
C | 1| 11 . . . |
C | | A sI-A . . . |
C | | 21 22 . . . |
C | | . . * * |
C [U'BV|sI - U'AU] = |0 | 0 . . |
C | | A sI-A * |
C | | p,p-1 pp |
C | | |
C |0 | 0 0 sI-A |
C | | p+1,p+1|
C
C
C where the i-th diagonal block of U'AU has dimension KSTAIR(i),
C for i = 1,...,p. The value of p is returned in INDCON. The last
C block contains the uncontrollable modes of the (A,B)-pair which
C are also the generalized eigenvalues of the above pencil.
C
C The complete reduction is performed in two stages. The first,
C forward stage accomplishes the reduction to the orthogonal
C canonical form. The second, backward stage consists in further
C reduction to triangular form by applying left and right orthogonal
C transformations.
C
C REFERENCES
C
C [1] Van Dooren, P.
C The generalized eigenvalue problem in linear system theory.
C IEEE Trans. Auto. Contr., AC-26, pp. 111-129, 1981.
C
C [2] Miminis, G. and Paige, C.
C An algorithm for pole assignment of time-invariant multi-input
C linear systems.
C Proc. 21st IEEE CDC, Orlando, Florida, 1, pp. 62-67, 1982.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O((N + M) x N**2) operations and is
C backward stable (see [1]).
C
C FURTHER COMMENTS
C
C If the system matrices A and B are badly scaled, it would be
C useful to scale them with SLICOT routine TB01ID, before calling
C the routine.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C Supersedes Release 2.0 routine AB01CD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C January 14, 1997, February 12, 1998.
C
C KEYWORDS
C
C Controllability, generalized eigenvalue problem, orthogonal
C transformation, staircase form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER*1 JOBU, JOBV, STAGES
INTEGER INFO, INDCON, LDA, LDB, LDU, LDV, LDWORK, M, N,
$ NCONT
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*), KSTAIR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), U(LDU,*), V(LDV,*)
C .. Local Scalars ..
LOGICAL LJOBUI, LJOBVI, LSTAGB, LSTGAB
INTEGER I, I0, IBSTEP, ITAU, J0, JINI, JWORK, MCRT, MM,
$ NCRT, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB01ND, DGERQF, DLACPY, DLASET, DORGRQ, DORMRQ,
$ DSWAP, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LJOBUI = LSAME( JOBU, 'I' )
C
LSTAGB = LSAME( STAGES, 'B' )
LSTGAB = LSAME( STAGES, 'A' ).OR.LSTAGB
C
IF ( LSTGAB ) THEN
LJOBVI = LSAME( JOBV, 'I' )
END IF
C
C Test the input scalar arguments.
C
IF( .NOT.LSTGAB .AND. .NOT.LSAME( STAGES, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.LJOBUI .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( .NOT.LJOBUI .AND. LDU.LT.1 .OR.
$ LJOBUI .AND. LDU.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( .NOT.LSTAGB .AND. LDWORK.LT.MAX( 1, N + MAX( N, 3*M ) )
$ .OR. LSTAGB .AND. LDWORK.LT.MAX( 1, M + MAX( N, M ) ) )
$ THEN
INFO = -20
ELSE IF( LSTGAB ) THEN
IF( .NOT.LJOBVI .AND. .NOT.LSAME( JOBV, 'N' ) ) THEN
INFO = -3
ELSE IF( .NOT.LJOBVI .AND. LDV.LT.1 .OR.
$ LJOBVI .AND. LDV.LT.MAX( 1, M ) ) THEN
INFO = -13
END IF
ELSE IF( .NOT.LSTAGB .AND. (TOL.LT.ZERO .OR. TOL.GT.ONE) ) THEN
C added by S. STEER (see mb03oy)
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB01OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( N, M ).EQ.0 ) THEN
NCONT = 0
INDCON = 0
RETURN
END IF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
ITAU = 1
WRKOPT = 1
C
IF ( .NOT.LSTAGB ) THEN
C
C Perform the forward stage computations of the staircase
C algorithm on B and A: reduce the (A, B) pair to orthogonal
C canonical form.
C
C Workspace: N + MAX(N,3*M).
C
JWORK = N + 1
CALL AB01ND( JOBU, N, M, A, LDA, B, LDB, NCONT, INDCON,
$ KSTAIR, U, LDU, DWORK(ITAU), TOL, IWORK,
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
IF(INFO.LT.0) RETURN
C
WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
END IF
C
C Exit if no further reduction to triangularize B1 and subdiagonal
C blocks of A is required, or if the order of the controllable part
C is 0.
C
IF ( .NOT.LSTGAB ) THEN
RETURN
ELSE IF ( NCONT.EQ.0 .OR. INDCON.EQ.0 ) THEN
IF( LJOBVI )
$ CALL DLASET( 'F', M, M, ZERO, ONE, V, LDV )
RETURN
END IF
C
C Now perform the backward steps except the last one.
C
MCRT = KSTAIR(INDCON)
I0 = NCONT - MCRT + 1
JWORK = M + 1
C
DO 10 IBSTEP = INDCON, 2, -1
NCRT = KSTAIR(IBSTEP-1)
J0 = I0 - NCRT
MM = MIN( NCRT, MCRT )
C
C Compute the RQ factorization of the current subdiagonal block
C of A, Ai,i-1 = R*Q (where i is IBSTEP), of dimension
C MCRT-by-NCRT, starting in position (I0,J0).
C The matrix Q' should postmultiply U, if required.
C Workspace: need M + MCRT;
C prefer M + MCRT*NB.
C
CALL DGERQF( MCRT, NCRT, A(I0,J0), LDA, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Set JINI to the first column number in A where the current
C transformation Q is to be applied, taking the block Hessenberg
C form into account.
C
IF ( IBSTEP.GT.2 ) THEN
JINI = J0 - KSTAIR(IBSTEP-2)
ELSE
JINI = 1
C
C Premultiply the first block row (B1) of B by Q.
C Workspace: need 2*M;
C prefer M + M*NB.
C
CALL DORMRQ( 'Left', 'No transpose', NCRT, M, MM, A(I0,J0),
$ LDA, DWORK(ITAU), B, LDB, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Premultiply the appropriate block row of A by Q.
C Workspace: need M + N;
C prefer M + N*NB.
C
CALL DORMRQ( 'Left', 'No transpose', NCRT, N-JINI+1, MM,
$ A(I0,J0), LDA, DWORK(ITAU), A(J0,JINI), LDA,
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Postmultiply the appropriate block column of A by Q'.
C Workspace: need M + I0-1;
C prefer M + (I0-1)*NB.
C
CALL DORMRQ( 'Right', 'Transpose', I0-1, NCRT, MM, A(I0,J0),
$ LDA, DWORK(ITAU), A(1,J0), LDA, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LJOBUI ) THEN
C
C Update U, postmultiplying it by Q'.
C Workspace: need M + N;
C prefer M + N*NB.
C
CALL DORMRQ( 'Right', 'Transpose', N, NCRT, MM, A(I0,J0),
$ LDA, DWORK(ITAU), U(1,J0), LDU, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Zero the subdiagonal elements of the current subdiagonal block
C of A.
C
CALL DLASET( 'F', MCRT, NCRT-MCRT, ZERO, ZERO, A(I0,J0), LDA )
IF ( I0.LT.N )
$ CALL DLASET( 'L', MCRT-1, MCRT-1, ZERO, ZERO,
$ A(I0+1,I0-MCRT), LDA )
C
MCRT = NCRT
I0 = J0
C
10 CONTINUE
C
C Now perform the last backward step on B, V = Qb'.
C
C Compute the RQ factorization of the first block of B, B1 = R*Qb.
C Workspace: need M + MCRT;
C prefer M + MCRT*NB.
C
CALL DGERQF( MCRT, M, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LJOBVI ) THEN
C
C Accumulate the input-space transformations V.
C Workspace: need 2*M; prefer M + M*NB.
C
CALL DLACPY( 'F', MCRT, M-MCRT, B, LDB, V(M-MCRT+1,1), LDV )
IF ( MCRT.GT.1 )
$ CALL DLACPY( 'L', MCRT-1, MCRT-1, B(2,M-MCRT+1), LDB,
$ V(M-MCRT+2,M-MCRT+1), LDV )
CALL DORGRQ( M, M, MCRT, V, LDV, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
C
DO 20 I = 2, M
CALL DSWAP( I-1, V(I, 1), LDV, V(1,I), 1 )
20 CONTINUE
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Zero the subdiagonal elements of the submatrix B1.
C
CALL DLASET( 'F', MCRT, M-MCRT, ZERO, ZERO, B, LDB )
IF ( MCRT.GT.1 )
$ CALL DLASET( 'L', MCRT-1, MCRT-1, ZERO, ZERO, B(2,M-MCRT+1),
$ LDB )
C
C Set optimal workspace dimension.
C
DWORK(1) = WRKOPT
RETURN
C *** Last line of AB01OD ***
END
|