1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
SUBROUTINE IB01ND( METH, JOBD, NOBR, M, L, R, LDR, SV, TOL, IWORK,
$ DWORK, LDWORK, IWARN, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To find the singular value decomposition (SVD) giving the system
C order, using the triangular factor of the concatenated block
C Hankel matrices. Related preliminary calculations needed for
C computing the system matrices are also performed.
C
C ARGUMENTS
C
C Mode Parameters
C
C METH CHARACTER*1
C Specifies the subspace identification method to be used,
C as follows:
C = 'M': MOESP algorithm with past inputs and outputs;
C = 'N': N4SID algorithm.
C
C JOBD CHARACTER*1
C Specifies whether or not the matrices B and D should later
C be computed using the MOESP approach, as follows:
C = 'M': the matrices B and D should later be computed
C using the MOESP approach;
C = 'N': the matrices B and D should not be computed using
C the MOESP approach.
C This parameter is not relevant for METH = 'N'.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C block Hankel matrices. NOBR > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C R (input/output) DOUBLE PRECISION array, dimension
C ( LDR,2*(M+L)*NOBR )
C On entry, the leading 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper
C triangular part of this array must contain the upper
C triangular factor R from the QR factorization of the
C concatenated block Hankel matrices. Denote R_ij,
C i,j = 1:4, the ij submatrix of R, partitioned by
C M*NOBR, M*NOBR, L*NOBR, and L*NOBR rows and columns.
C On exit, if INFO = 0, the leading
C 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper triangular part of this
C array contains the matrix S, the processed upper
C triangular factor R, as required by other subroutines.
C Specifically, let S_ij, i,j = 1:4, be the ij submatrix
C of S, partitioned by M*NOBR, L*NOBR, M*NOBR, and
C L*NOBR rows and columns. The submatrix S_22 contains
C the matrix of left singular vectors needed subsequently.
C Useful information is stored in S_11 and in the
C block-column S_14 : S_44. For METH = 'M' and JOBD = 'M',
C the upper triangular part of S_31 contains the upper
C triangular factor in the QR factorization of the matrix
C R_1c = [ R_12' R_22' R_11' ]', and S_12 contains the
C corresponding leading part of the transformed matrix
C R_2c = [ R_13' R_23' R_14' ]'. For METH = 'N', the
C subarray S_41 : S_43 contains the transpose of the
C matrix contained in S_14 : S_34.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 2*(M+L)*NOBR, 3*M*NOBR ),
C for METH = 'M' and JOBD = 'M';
C LDR >= 2*(M+L)*NOBR, for METH = 'M' and JOBD = 'N' or
C for METH = 'N'.
C
C SV (output) DOUBLE PRECISION array, dimension ( L*NOBR )
C The singular values of the relevant part of the triangular
C factor from the QR factorization of the concatenated block
C Hankel matrices.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C This parameter is not used for METH = 'M'.
C
C Workspace
C
C IWORK INTEGER array, dimension ((M+L)*NOBR)
C This parameter is not referenced for METH = 'M'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, for METH = 'N', DWORK(2) and DWORK(3)
C contain the reciprocal condition numbers of the
C triangular factors of the matrices U_f and r_1 [6].
C On exit, if INFO = -12, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( (2*M-1)*NOBR, (M+L)*NOBR, 5*L*NOBR ),
C if METH = 'M' and JOBD = 'M';
C LDWORK >= 5*L*NOBR, if METH = 'M' and JOBD = 'N';
C LDWORK >= 5*(M+L)*NOBR, if METH = 'N'.
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problems with coefficient matrix
C U_f, used for computing the weighted oblique
C projection (for METH = 'N'), have a rank-deficient
C coefficient matrix;
C = 5: the least squares problem with coefficient matrix
C r_1 [6], used for computing the weighted oblique
C projection (for METH = 'N'), has a rank-deficient
C coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge.
C
C METHOD
C
C A singular value decomposition (SVD) of a certain matrix is
C computed, which reveals the order n of the system as the number
C of "non-zero" singular values. For the MOESP approach, this matrix
C is [ R_24' R_34' ]' := R(ms+1:(2m+l)s,(2m+l)s+1:2(m+l)s),
C where R is the upper triangular factor R constructed by SLICOT
C Library routine IB01MD. For the N4SID approach, a weighted
C oblique projection is computed from the upper triangular factor R
C and its SVD is then found.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Verhaegen M.
C Subspace Model Identification. Part 3: Analysis of the
C ordinary output-error state-space model identification
C algorithm.
C Int. J. Control, 58, pp. 555-586, 1993.
C
C [3] Verhaegen M.
C Identification of the deterministic part of MIMO state space
C models given in innovations form from input-output data.
C Automatica, Vol.30, No.1, pp.61-74, 1994.
C
C [4] Van Overschee, P., and De Moor, B.
C N4SID: Subspace Algorithms for the Identification of
C Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [5] Van Overschee, P., and De Moor, B.
C Subspace Identification for Linear Systems: Theory -
C Implementation - Applications.
C Kluwer Academic Publishers, Boston/London/Dordrecht, 1996.
C
C [6] Sima, V.
C Subspace-based Algorithms for Multivariable System
C Identification.
C Studies in Informatics and Control, 5, pp. 335-344, 1996.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C 3
C The algorithm requires 0(((m+l)s) ) floating point operations.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999.
C
C REVISIONS
C
C Feb. 2000, Feb. 2001.
C
C KEYWORDS
C
C Identification methods, multivariable systems, QR decomposition,
C singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDR, LDWORK, M, NOBR
CHARACTER JOBD, METH
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), R(LDR, *), SV(*)
INTEGER IWORK(*)
C .. Local Scalars ..
DOUBLE PRECISION EPS, RCOND1, RCOND2, SVLMAX, THRESH, TOLL
INTEGER I, IERR, ITAU, ITAU2, ITAU3, JWORK, LLMNOB,
$ LLNOBR, LMMNOB, LMNOBR, LNOBR, MAXWRK, MINWRK,
$ MMNOBR, MNOBR, NR, NR2, NR3, NR4, NRSAVE, RANK,
$ RANK1
LOGICAL JOBDM, MOESP, N4SID
C .. Local Arrays ..
DOUBLE PRECISION DUM(1), SVAL(3)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEQRF, DLACPY, DLASET, DORMQR, DSWAP,
$ DTRCON, MA02AD, MB03OD, MB03UD, MB04ID, MB04IY,
$ MB04OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MOESP = LSAME( METH, 'M' )
N4SID = LSAME( METH, 'N' )
JOBDM = LSAME( JOBD, 'M' )
MNOBR = M*NOBR
LNOBR = L*NOBR
LLNOBR = LNOBR + LNOBR
LMNOBR = LNOBR + MNOBR
MMNOBR = MNOBR + MNOBR
LMMNOB = MMNOBR + LNOBR
NR = LMNOBR + LMNOBR
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.( MOESP .OR. N4SID ) ) THEN
INFO = -1
ELSE IF( MOESP .AND. .NOT.( JOBDM .OR. LSAME( JOBD, 'N' ) ) ) THEN
INFO = -2
ELSE IF( NOBR.LE.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( L.LE.0 ) THEN
INFO = -5
ELSE IF( LDR.LT.NR .OR. ( MOESP .AND. JOBDM .AND.
$ LDR.LT.3*MNOBR ) ) THEN
INFO = -7
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MINWRK = 1
IF ( LDWORK.GE.1 ) THEN
IF ( MOESP ) THEN
MINWRK = 5*LNOBR
IF ( JOBDM )
$ MINWRK = MAX( MMNOBR - NOBR, LMNOBR, MINWRK )
MAXWRK = LNOBR + LNOBR*ILAENV( 1, 'DGEQRF', ' ', LMNOBR,
$ LNOBR, -1, -1 )
ELSE
C
MINWRK = MAX( MINWRK, 5*LMNOBR )
MAXWRK = MAX( MNOBR + MNOBR*ILAENV( 1, 'DGEQRF', ' ',
$ MMNOBR, MNOBR, -1, -1 ),
$ MNOBR + LLNOBR*ILAENV( 1, 'DORMQR', 'LT',
$ MMNOBR, LLNOBR, MNOBR, -1 ) )
MAXWRK = MAX( MAXWRK, MNOBR + LNOBR*ILAENV( 1, 'DORMQR',
$ 'LN', MMNOBR, LNOBR, MNOBR,
$ -1 ) )
MAXWRK = MAX( MAXWRK, LNOBR + LNOBR*ILAENV( 1, 'DGEQRF',
$ ' ', LMMNOB, LNOBR, -1, -1 ) )
END IF
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -12
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01ND', -INFO )
RETURN
END IF
C
C Compute pointers to the needed blocks of R.
C
NR2 = MNOBR + 1
NR3 = MMNOBR + 1
NR4 = LMMNOB + 1
ITAU = 1
JWORK = ITAU + MNOBR
C
IF( MOESP ) THEN
C
C MOESP approach.
C
IF( M.GT.0 .AND. JOBDM ) THEN
C
C Rearrange the blocks of R:
C Copy the (1,1) block into the position (3,2) and
C copy the (1,4) block into (3,3).
C
CALL DLACPY( 'Upper', MNOBR, MNOBR, R, LDR, R(NR3,NR2),
$ LDR )
CALL DLACPY( 'Full', MNOBR, LNOBR, R(1,NR4), LDR,
$ R(NR3,NR3), LDR )
C
C Using structure, triangularize the matrix
C R_1c = [ R_12' R_22' R_11' ]'
C and then apply the transformations to the matrix
c R_2c = [ R_13' R_23' R_14' ]'.
C Workspace: need M*NOBR + MAX(M-1,L)*NOBR.
C
CALL MB04OD( 'Upper', MNOBR, LNOBR, MNOBR, R(NR2,NR2), LDR,
$ R(NR3,NR2), LDR, R(NR2,NR3), LDR, R(NR3,NR3),
$ LDR, DWORK(ITAU), DWORK(JWORK) )
CALL MB04ID( MMNOBR, MNOBR, MNOBR-1, LNOBR, R(1,NR2), LDR,
$ R(1,NR3), LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Copy the leading M*NOBR x M*NOBR and M*NOBR x L*NOBR
C submatrices of R_1c and R_2c, respectively, into their
C final positions, required by SLICOT Library routine IB01PD.
C
CALL DLACPY( 'Upper', MNOBR, MNOBR, R(1,NR2), LDR,
$ R(LMNOBR+1,1), LDR )
CALL DLACPY( 'Full', MNOBR, LNOBR, R(1,NR3), LDR, R(1,NR2),
$ LDR )
END IF
C
C Copy [ R_24' R_34' ]' in [ R_22' R_32' ]'.
C
CALL DLACPY( 'Full', LMNOBR, LNOBR, R(NR2,NR4), LDR,
$ R(NR2,NR2), LDR )
C
C Triangularize the matrix in [ R_22' R_32' ]'.
C Workspace: need 2*L*NOBR; prefer L*NOBR + L*NOBR*NB.
C
JWORK = ITAU + LNOBR
CALL DGEQRF( LMNOBR, LNOBR, R(NR2,NR2), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
ELSE
C
C N4SID approach.
C
DUM(1) = ZERO
LLMNOB = LLNOBR + MNOBR
C
C Set the precision parameters. A threshold value EPS**(2/3) is
C used for deciding to use pivoting or not, where EPS is the
C relative machine precision (see LAPACK Library routine DLAMCH).
C
TOLL = TOL
EPS = DLAMCH( 'Precision' )
THRESH = EPS**( TWO/THREE )
C
IF( M.GT.0 ) THEN
C
C For efficiency of later calculations, interchange the first
C two block-columns. The corresponding submatrices are
C redefined according to their new position.
C
DO 10 I = 1, MNOBR
CALL DSWAP( I, R(1,I), 1, R(1,MNOBR+I), 1 )
CALL DCOPY( MNOBR, R(I+1,MNOBR+I), 1, R(I+1,I), 1 )
CALL DCOPY( MMNOBR-I, DUM, 0, R(I+1,MNOBR+I), 1 )
10 CONTINUE
C
C Now,
C
C U_f = [ R_11' R_21' 0 0 ]',
C U_p = [ R_12' 0 0 0 ]',
C Y_p = [ R_13' R_23' R_33' 0 ]', and
C Y_f = [ R_14' R_24' R_34' R_44' ]',
C
C where R_21, R_12, R_33, and R_44 are upper triangular.
C Define W_p := [ U_p Y_p ].
C
C Prepare the computation of residuals of the two least
C squares problems giving the weighted oblique projection P:
C
C r_1 = W_p - U_f X_1, X_1 = arg min || U_f X - W_p ||,
C r_2 = Y_f - U_f X_2, X_2 = arg min || U_f X - Y_f ||,
C
C P = (arg min || r_1 X - r_2 ||)' r_1'. (1)
C
C Alternately, P' is given by the projection
C P' = Q_1 (Q_1)' r_2,
C where Q_1 contains the first k columns of the orthogonal
C matrix in the QR factorization of r_1, k := rank(r_1).
C
C Triangularize the matrix U_f = q r (using structure), and
C apply the transformation q' to the corresponding part of
C the matrices W_p, and Y_f.
C Workspace: need 2*(M+L)*NOBR.
C
CALL MB04ID( MMNOBR, MNOBR, MNOBR-1, LLMNOB, R, LDR,
$ R(1,NR2), LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Save updated Y_f (transposed) in the last block-row of R.
C
CALL MA02AD( 'Full', LMMNOB, LNOBR, R(1,NR4), LDR, R(NR4,1),
$ LDR )
C
C Check the condition of the triangular factor r and decide
C to use pivoting or not.
C Workspace: need 4*M*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', MNOBR, R, LDR,
$ RCOND1, DWORK(JWORK), IWORK, IERR )
C
IF( TOLL.LE.ZERO )
$ TOLL = MNOBR*MNOBR*EPS
IF ( RCOND1.GT.MAX( TOLL, THRESH ) ) THEN
C
C U_f is considered full rank and no pivoting is used.
C
CALL DLASET( 'Full', MNOBR, LLMNOB, ZERO, ZERO, R(1,NR2),
$ LDR )
ELSE
C
C Save information about q in the (2,1) block of R.
C Use QR factorization with column pivoting, r P = Q R.
C Information on Q is stored in the strict lower triangle
C of R_11 and in DWORK(ITAU2).
C
DO 20 I = 1, MNOBR - 1
CALL DCOPY( MNOBR, R(I+1,I), -1, R(NR2,I), -1 )
CALL DCOPY( MNOBR-I, DUM, 0, R(I+1,I), 1 )
IWORK(I) = 0
20 CONTINUE
C
IWORK(MNOBR) = 0
C
C Workspace: need 5*M*NOBR.
C
ITAU2 = JWORK
JWORK = ITAU2 + MNOBR
SVLMAX = ZERO
CALL MB03OD( 'QR', MNOBR, MNOBR, R, LDR, IWORK, TOLL,
$ SVLMAX, DWORK(ITAU2), RANK, SVAL,
$ DWORK(JWORK), IERR )
C
C Workspace: need 2*M*NOBR + (M+2*L)*NOBR;
C prefer 2*M*NOBR + (M+2*L)*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', MNOBR, LLMNOB, MNOBR,
$ R, LDR, DWORK(ITAU2), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( RANK.LT.MNOBR ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 4
END IF
C
C Determine residuals r_1 and r_2: premultiply by Q and
C then by q.
C Workspace: need 2*M*NOBR + (M+2*L)*NOBR);
C prefer 2*M*NOBR + (M+2*L)*NOBR*NB.
C
CALL DLASET( 'Full', RANK, LLMNOB, ZERO, ZERO, R(1,NR2),
$ LDR )
CALL DORMQR( 'Left', 'NoTranspose', MNOBR, LLMNOB, MNOBR,
$ R, LDR, DWORK(ITAU2), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU2
C
C Restore the transformation q.
C
DO 30 I = 1, MNOBR - 1
CALL DCOPY( MNOBR, R(NR2,I), 1, R(I+1,I), 1 )
30 CONTINUE
C
END IF
C
C Premultiply by the transformation q (apply transformations
C in backward order).
C Workspace: need M*NOBR + (M+2*L)*NOBR;
C prefer larger.
C
CALL MB04IY( 'Left', 'NoTranspose', MMNOBR, LLMNOB, MNOBR,
$ MNOBR-1, R, LDR, DWORK(ITAU), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
ELSE
C
C Save Y_f (transposed) in the last block-row of R.
C
CALL MA02AD( 'Full', LMMNOB, LNOBR, R(1,NR4), LDR, R(NR4,1),
$ LDR )
RCOND1 = ONE
END IF
C
C Triangularize the matrix r_1 for determining the oblique
C projection P in least squares problem in (1). Exploit the
C fact that the third block-row of r_1 has the structure
C [ 0 T ], where T is an upper triangular matrix. Then apply
C the corresponding transformations Q' to the matrix r_2.
C Workspace: need 2*M*NOBR;
C prefer M*NOBR + M*NOBR*NB.
C
CALL DGEQRF( MMNOBR, MNOBR, R(1,NR2), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Workspace: need M*NOBR + 2*L*NOBR;
C prefer M*NOBR + 2*L*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', MMNOBR, LLNOBR, MNOBR,
$ R(1,NR2), LDR, DWORK(ITAU), R(1,NR3), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
NRSAVE = NR2
C
ITAU2 = JWORK
JWORK = ITAU2 + LNOBR
CALL MB04ID( LMNOBR, LNOBR, LNOBR-1, LNOBR, R(NR2,NR3), LDR,
$ R(NR2,NR4), LDR, DWORK(ITAU2), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Check the condition of the triangular matrix of order (m+l)*s
C just determined, and decide to use pivoting or not.
C Workspace: need 4*(M+L)*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', LMNOBR, R(1,NR2),
$ LDR, RCOND2, DWORK(JWORK), IWORK, IERR )
C
IF( TOL.LE.ZERO )
$ TOLL = LMNOBR*LMNOBR*EPS
IF ( RCOND2.LE.MAX( TOLL, THRESH ) ) THEN
IF ( M.GT.0 ) THEN
C
C Save information about Q in R_11 (in the strict lower
C triangle), R_21 and R_31 (transposed information).
C
CALL DLACPY( 'Lower', MMNOBR-1, MNOBR, R(2,NR2), LDR,
$ R(2,1), LDR )
NRSAVE = 1
C
DO 40 I = NR2, LMNOBR
CALL DCOPY( MNOBR, R(I+1,MNOBR+I), 1, R(MNOBR+I,1),
$ LDR )
40 CONTINUE
C
END IF
C
CALL DLASET( 'Lower', LMNOBR-1, LMNOBR-1, ZERO, ZERO,
$ R(2,NR2), LDR )
C
C Use QR factorization with column pivoting.
C Workspace: need 5*(M+L)*NOBR.
C
DO 50 I = 1, LMNOBR
IWORK(I) = 0
50 CONTINUE
C
ITAU3 = JWORK
JWORK = ITAU3 + LMNOBR
SVLMAX = ZERO
CALL MB03OD( 'QR', LMNOBR, LMNOBR, R(1,NR2), LDR, IWORK,
$ TOLL, SVLMAX, DWORK(ITAU3), RANK1, SVAL,
$ DWORK(JWORK), IERR )
C
C Workspace: need 2*(M+L)*NOBR + L*NOBR;
C prefer 2*(M+L)*NOBR + L*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', LMNOBR, LNOBR, LMNOBR,
$ R(1,NR2), LDR, DWORK(ITAU3), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( RANK1.LT.LMNOBR ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 5
END IF
C
C Apply the orthogonal transformations, in backward order, to
C [r_2(1:rank(r_1),:)' 0]', to obtain P'.
C Workspace: need 2*(M+L)*NOBR + L*NOBR;
C prefer 2*(M+L)*NOBR + L*NOBR*NB.
C
CALL DLASET( 'Full', LMNOBR-RANK1, LNOBR, ZERO, ZERO,
$ R(RANK1+1,NR4), LDR )
CALL DORMQR( 'Left', 'NoTranspose', LMNOBR, LNOBR, LMNOBR,
$ R(1,NR2), LDR, DWORK(ITAU3), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU3
C
IF ( M.GT.0 ) THEN
C
C Restore the saved transpose matrix from R_31.
C
DO 60 I = NR2, LMNOBR
CALL DCOPY( MNOBR, R(MNOBR+I,1), LDR, R(I+1,MNOBR+I),
$ 1 )
60 CONTINUE
C
END IF
C
END IF
C
C Workspace: need M*NOBR + L*NOBR;
C prefer larger.
C
CALL MB04IY( 'Left', 'NoTranspose', LMNOBR, LNOBR, LNOBR,
$ LNOBR-1, R(NR2,NR3), LDR, DWORK(ITAU2),
$ R(NR2,NR4), LDR, DWORK(JWORK), LDWORK-JWORK+1,
$ IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need M*NOBR + L*NOBR;
C prefer M*NOBR + L*NOBR*NB.
C
JWORK = ITAU2
CALL DORMQR( 'Left', 'NoTranspose', MMNOBR, LNOBR, MNOBR,
$ R(1,NRSAVE), LDR, DWORK(ITAU), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Now, the matrix P' is available in R_14 : R_34.
C Triangularize the matrix P'.
C Workspace: need 2*L*NOBR;
C prefer L*NOBR + L*NOBR*NB.
C
JWORK = ITAU + LNOBR
CALL DGEQRF( LMMNOB, LNOBR, R(1,NR4), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Copy the triangular factor to its final position, R_22.
C
CALL DLACPY( 'Upper', LNOBR, LNOBR, R(1,NR4), LDR, R(NR2,NR2),
$ LDR )
C
C Restore Y_f.
C
CALL MA02AD( 'Full', LNOBR, LMMNOB, R(NR4,1), LDR, R(1,NR4),
$ LDR )
END IF
C
C Find the singular value decomposition of R_22.
C Workspace: need 5*L*NOBR.
C
CALL MB03UD( 'NoVectors', 'Vectors', LNOBR, R(NR2,NR2), LDR,
$ DUM, 1, SV, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
C Transpose R(m*s+1:(m+L)*s,m*s+1:(m+L)*s) in-situ; its
C columns will then be the singular vectors needed subsequently.
C
DO 70 I = NR2+1, LMNOBR
CALL DSWAP( LMNOBR-I+1, R(I,I-1), 1, R(I-1,I), LDR )
70 CONTINUE
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C numbers, if METH = 'N'.
C
DWORK(1) = MAXWRK
IF ( N4SID ) THEN
DWORK(2) = RCOND1
DWORK(3) = RCOND2
END IF
RETURN
C
C *** Last line of IB01ND ***
END
|