1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
SUBROUTINE MB01TD( N, A, LDA, B, LDB, DWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute the matrix product A * B, where A and B are upper
C quasi-triangular matrices (that is, block upper triangular with
C 1-by-1 or 2-by-2 diagonal blocks) with the same structure.
C The result is returned in the array B.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and B. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C upper quasi-triangular matrix A. The elements below the
C subdiagonal are not referenced.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading N-by-N part of this array must
C contain the upper quasi-triangular matrix B, with the same
C structure as matrix A.
C On exit, the leading N-by-N part of this array contains
C the computed product A * B, with the same structure as
C on entry.
C The elements below the subdiagonal are not referenced.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N-1)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrices A and B have not the same structure,
C and/or A and B are not upper quasi-triangular.
C
C METHOD
C
C The matrix product A * B is computed column by column, using
C BLAS 2 and BLAS 1 operations.
C
C FURTHER COMMENTS
C
C This routine can be used, for instance, for computing powers of
C a real Schur form matrix.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, June 1998.
C
C REVISIONS
C
C V. Sima, Feb. 2000.
C
C KEYWORDS
C
C Elementary matrix operations, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*)
C .. Local Scalars ..
INTEGER I, J, JMIN, JMNM
C .. External Subroutines ..
EXTERNAL DAXPY, DTRMV, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01TD', -INFO )
RETURN
END IF
C
C Quick return, if possible.
C
IF ( N.EQ.0 ) THEN
RETURN
ELSE IF ( N.EQ.1 ) THEN
B(1,1) = A(1,1)*B(1,1)
RETURN
END IF
C
C Test the upper quasi-triangular structure of A and B for identity.
C
DO 10 I = 1, N - 1
IF ( A(I+1,I).EQ.ZERO ) THEN
IF ( B(I+1,I).NE.ZERO ) THEN
INFO = 1
RETURN
END IF
ELSE IF ( I.LT.N-1 ) THEN
IF ( A(I+2,I+1).NE.ZERO ) THEN
INFO = 1
RETURN
END IF
END IF
10 CONTINUE
C
DO 30 J = 1, N
JMIN = MIN( J+1, N )
JMNM = MIN( JMIN, N-1 )
C
C Compute the contribution of the subdiagonal of A to the
C j-th column of the product.
C
DO 20 I = 1, JMNM
DWORK(I) = A(I+1,I)*B(I,J)
20 CONTINUE
C
C Multiply the upper triangle of A by the j-th column of B,
C and add to the above result.
C
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', JMIN, A, LDA,
$ B(1,J), 1 )
CALL DAXPY( JMNM, ONE, DWORK, 1, B(2,J), 1 )
30 CONTINUE
C
RETURN
C *** Last line of MB01TD ***
END
|