File: mb02qy.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (323 lines) | stat: -rw-r--r-- 10,557 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
      SUBROUTINE MB02QY( M, N, NRHS, RANK, A, LDA, JPVT, B, LDB, TAU,
     $                   DWORK, LDWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To determine the minimum-norm solution to a real linear least
C     squares problem:
C
C         minimize || A * X - B ||,
C
C     using the rank-revealing QR factorization of a real general
C     M-by-N matrix  A,  computed by SLICOT Library routine  MB03OD.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrices A and B.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrix A.  N >= 0.
C
C     NRHS    (input) INTEGER
C             The number of columns of the matrix B.  NRHS >= 0.
C
C     RANK    (input) INTEGER
C             The effective rank of  A,  as returned by SLICOT Library   
C             routine  MB03OD.  min(M,N) >= RANK >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension 
C             ( LDA, N )
C             On entry, the leading min(M,N)-by-N upper trapezoidal
C             part of this array contains the triangular factor  R,  as
C             returned by SLICOT Library routine  MB03OD.  The strict
C             lower trapezoidal part of  A  is not referenced.
C             On exit, if  RANK < N,  the leading  RANK-by-RANK  upper 
C             triangular part of this array contains the upper
C             triangular matrix  R  of the complete orthogonal 
C             factorization of  A,  and the submatrix  (1:RANK,RANK+1:N)
C             of this array, with the array  TAU,  represent the
C             orthogonal matrix  Z  (of the complete orthogonal 
C             factorization of  A),  as a product of  RANK  elementary 
C             reflectors. 
C             On exit, if  RANK = N,  this array is unchanged. 
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,M).
C
C     JPVT    (input) INTEGER array, dimension ( N )
C             The recorded permutations performed by SLICOT Library
C             routine  MB03OD;  if  JPVT(i) = k,  then the i-th column
C             of  A*P  was the k-th column of the original matrix  A.
C
C     B       (input/output) DOUBLE PRECISION array, dimension 
C             ( LDB, NRHS )
C             On entry, if  NRHS > 0,  the leading M-by-NRHS part of
C             this array must contain the matrix  B  (corresponding to
C             the transformed matrix  A,  returned by SLICOT Library 
C             routine  MB03OD).
C             On exit, if  NRHS > 0,  the leading N-by-NRHS part of this
C             array contains the solution matrix X.
C             If  M >= N  and  RANK = N,  the residual sum-of-squares
C             for the solution in the i-th column is given by the sum
C             of squares of elements  N+1:M  in that column.
C             If  NRHS = 0,  the array  B  is not referenced.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= max(1,M,N),  if  NRHS > 0.
C             LDB >= 1,           if  NRHS = 0.
C
C     TAU     (output) DOUBLE PRECISION array, dimension ( min(M,N) )
C             The scalar factors of the elementary reflectors.
C             If  RANK = N,  the array  TAU  is not referenced. 
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension ( LDWORK )
C             On exit, if  INFO = 0,  DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= max( 1, N, NRHS ).
C             For good performance,  LDWORK  should sometimes be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine uses a QR factorization with column pivoting:
C
C        A * P = Q * R = Q * [ R11 R12 ],
C                            [  0  R22 ]
C
C     where  R11  is an upper triangular submatrix of estimated rank
C     RANK,  the effective rank of  A.  The submatrix  R22  can be
C     considered as negligible.
C
C     If  RANK < N,  then  R12  is annihilated by orthogonal
C     transformations from the right, arriving at the complete
C     orthogonal factorization:
C
C        A * P = Q * [ T11 0 ] * Z.
C                    [  0  0 ]
C
C     The minimum-norm solution is then
C
C        X = P * Z' [ inv(T11)*Q1'*B ],
C                   [        0       ]
C
C     where Q1 consists of the first  RANK  columns of Q.
C
C     The input data for  MB02QY  are the transformed matrices  Q' * A
C     (returned by SLICOT Library routine  MB03OD)  and  Q' * B.  
C     Matrix  Q  is not needed.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Least squares solutions; QR decomposition.
C
C    ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDWORK, M, N, NRHS, RANK
C     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DWORK( * ), TAU( * )
C     .. Local Scalars ..
      INTEGER            I, IASCL, IBSCL, J, MN
      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, MAXWRK, SMLNUM
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANTR
      EXTERNAL           DLAMCH, DLANGE, DLANTR
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DLABAD, DLASCL, DLASET, DORMRZ, DTRSM,
     $                   DTZRZF, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
C     ..
C     .. Executable Statements ..
C
      MN = MIN( M, N )
C
C     Test the input scalar arguments.
C
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( RANK.LT.0 .OR. RANK.GT.MN ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.1 .OR. ( NRHS.GT.0 .AND. LDB.LT.MAX( M, N ) ) )
     $      THEN
         INFO = -9
      ELSE IF( LDWORK.LT.MAX( 1, N, NRHS ) ) THEN
         INFO = -12
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02QY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( MN, NRHS ).EQ.0 ) THEN
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
C     Logically partition R = [ R11 R12 ],
C                             [  0  R22 ]
C
C     where R11 = R(1:RANK,1:RANK).  If  RANK = N,  let  T11 = R11.
C
      MAXWRK = DBLE( N )
      IF( RANK.LT.N ) THEN
C
C        Get machine parameters.
C
         SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
         BIGNUM = ONE / SMLNUM
         CALL DLABAD( SMLNUM, BIGNUM )
C
C        Scale A, B if max entries outside range [SMLNUM,BIGNUM].
C
         ANRM = DLANTR( 'MaxNorm', 'Upper', 'Non-unit', RANK, N, A, LDA,
     $                  DWORK )
         IASCL = 0
         IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
C
C           Scale matrix norm up to SMLNUM.
C
            CALL DLASCL( 'Upper', 0, 0, ANRM, SMLNUM, RANK, N, A, LDA,
     $                   INFO )
            IASCL = 1
         ELSE IF( ANRM.GT.BIGNUM ) THEN
C
C           Scale matrix norm down to BIGNUM.
C
            CALL DLASCL( 'Upper', 0, 0, ANRM, BIGNUM, RANK, N, A, LDA,
     $                   INFO )
            IASCL = 2
         ELSE IF( ANRM.EQ.ZERO ) THEN
C
C           Matrix all zero. Return zero solution.
C
            CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, B, LDB )
            DWORK( 1 ) = ONE
            RETURN
         END IF
C
         BNRM = DLANGE( 'MaxNorm', M, NRHS, B, LDB, DWORK )
         IBSCL = 0
         IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
C
C           Scale matrix norm up to SMLNUM.
C
            CALL DLASCL( 'General', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB,
     $                   INFO )
            IBSCL = 1
         ELSE IF( BNRM.GT.BIGNUM ) THEN
C
C           Scale matrix norm down to BIGNUM.
C
            CALL DLASCL( 'General', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB,
     $                   INFO )
            IBSCL = 2
         END IF
C
C        [R11,R12] = [ T11, 0 ] * Z.
C        Details of Householder rotations are stored in TAU.
C        Workspace need RANK, prefer RANK*NB.
C
         CALL DTZRZF( RANK, N, A, LDA, TAU, DWORK, LDWORK, INFO )
         MAXWRK = MAX( MAXWRK, DWORK( 1 ) )
      END IF
C
C     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS).
C
      CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
     $            NRHS, ONE, A, LDA, B, LDB )
C
      IF( RANK.LT.N ) THEN
C
         CALL DLASET( 'Full', N-RANK, NRHS, ZERO, ZERO, B( RANK+1, 1 ),
     $                LDB )
C
C        B(1:N,1:NRHS) := Z' * B(1:N,1:NRHS).
C        Workspace need NRHS, prefer NRHS*NB.
C
         CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
     $                LDA, TAU, B, LDB, DWORK, LDWORK, INFO )
         MAXWRK = MAX( MAXWRK, DWORK( 1 ) )
C
C        Undo scaling.
C
         IF( IASCL.EQ.1 ) THEN
            CALL DLASCL( 'General', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB,
     $                   INFO )
            CALL DLASCL( 'Upper', 0, 0, SMLNUM, ANRM, RANK, RANK, A,
     $                   LDA, INFO )
         ELSE IF( IASCL.EQ.2 ) THEN
            CALL DLASCL( 'General', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB,
     $                   INFO )
            CALL DLASCL( 'Upper', 0, 0, BIGNUM, ANRM, RANK, RANK, A,
     $                   LDA, INFO )
         END IF
         IF( IBSCL.EQ.1 ) THEN
            CALL DLASCL( 'General', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB,
     $                   INFO )
         ELSE IF( IBSCL.EQ.2 ) THEN
            CALL DLASCL( 'General', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB,
     $                   INFO )
         END IF
      END IF
C
C     B(1:N,1:NRHS) := P * B(1:N,1:NRHS).
C     Workspace N.
C
      DO 20 J = 1, NRHS
C
         DO 10 I = 1, N
            DWORK( JPVT( I ) ) = B( I, J )
   10    CONTINUE
C
         CALL DCOPY( N, DWORK, 1, B( 1, J ), 1 )
   20 CONTINUE
C
      DWORK( 1 ) = MAXWRK
      RETURN
C
C *** Last line of MB02QY ***
      END