1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
SUBROUTINE MB02QY( M, N, NRHS, RANK, A, LDA, JPVT, B, LDB, TAU,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To determine the minimum-norm solution to a real linear least
C squares problem:
C
C minimize || A * X - B ||,
C
C using the rank-revealing QR factorization of a real general
C M-by-N matrix A, computed by SLICOT Library routine MB03OD.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrices A and B. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C NRHS (input) INTEGER
C The number of columns of the matrix B. NRHS >= 0.
C
C RANK (input) INTEGER
C The effective rank of A, as returned by SLICOT Library
C routine MB03OD. min(M,N) >= RANK >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension
C ( LDA, N )
C On entry, the leading min(M,N)-by-N upper trapezoidal
C part of this array contains the triangular factor R, as
C returned by SLICOT Library routine MB03OD. The strict
C lower trapezoidal part of A is not referenced.
C On exit, if RANK < N, the leading RANK-by-RANK upper
C triangular part of this array contains the upper
C triangular matrix R of the complete orthogonal
C factorization of A, and the submatrix (1:RANK,RANK+1:N)
C of this array, with the array TAU, represent the
C orthogonal matrix Z (of the complete orthogonal
C factorization of A), as a product of RANK elementary
C reflectors.
C On exit, if RANK = N, this array is unchanged.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C JPVT (input) INTEGER array, dimension ( N )
C The recorded permutations performed by SLICOT Library
C routine MB03OD; if JPVT(i) = k, then the i-th column
C of A*P was the k-th column of the original matrix A.
C
C B (input/output) DOUBLE PRECISION array, dimension
C ( LDB, NRHS )
C On entry, if NRHS > 0, the leading M-by-NRHS part of
C this array must contain the matrix B (corresponding to
C the transformed matrix A, returned by SLICOT Library
C routine MB03OD).
C On exit, if NRHS > 0, the leading N-by-NRHS part of this
C array contains the solution matrix X.
C If M >= N and RANK = N, the residual sum-of-squares
C for the solution in the i-th column is given by the sum
C of squares of elements N+1:M in that column.
C If NRHS = 0, the array B is not referenced.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= max(1,M,N), if NRHS > 0.
C LDB >= 1, if NRHS = 0.
C
C TAU (output) DOUBLE PRECISION array, dimension ( min(M,N) )
C The scalar factors of the elementary reflectors.
C If RANK = N, the array TAU is not referenced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension ( LDWORK )
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( 1, N, NRHS ).
C For good performance, LDWORK should sometimes be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine uses a QR factorization with column pivoting:
C
C A * P = Q * R = Q * [ R11 R12 ],
C [ 0 R22 ]
C
C where R11 is an upper triangular submatrix of estimated rank
C RANK, the effective rank of A. The submatrix R22 can be
C considered as negligible.
C
C If RANK < N, then R12 is annihilated by orthogonal
C transformations from the right, arriving at the complete
C orthogonal factorization:
C
C A * P = Q * [ T11 0 ] * Z.
C [ 0 0 ]
C
C The minimum-norm solution is then
C
C X = P * Z' [ inv(T11)*Q1'*B ],
C [ 0 ]
C
C where Q1 consists of the first RANK columns of Q.
C
C The input data for MB02QY are the transformed matrices Q' * A
C (returned by SLICOT Library routine MB03OD) and Q' * B.
C Matrix Q is not needed.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Least squares solutions; QR decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDWORK, M, N, NRHS, RANK
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ), TAU( * )
C .. Local Scalars ..
INTEGER I, IASCL, IBSCL, J, MN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, MAXWRK, SMLNUM
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANTR
EXTERNAL DLAMCH, DLANGE, DLANTR
C .. External Subroutines ..
EXTERNAL DCOPY, DLABAD, DLASCL, DLASET, DORMRZ, DTRSM,
$ DTZRZF, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C ..
C .. Executable Statements ..
C
MN = MIN( M, N )
C
C Test the input scalar arguments.
C
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( RANK.LT.0 .OR. RANK.GT.MN ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.1 .OR. ( NRHS.GT.0 .AND. LDB.LT.MAX( M, N ) ) )
$ THEN
INFO = -9
ELSE IF( LDWORK.LT.MAX( 1, N, NRHS ) ) THEN
INFO = -12
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02QY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( MN, NRHS ).EQ.0 ) THEN
DWORK( 1 ) = ONE
RETURN
END IF
C
C Logically partition R = [ R11 R12 ],
C [ 0 R22 ]
C
C where R11 = R(1:RANK,1:RANK). If RANK = N, let T11 = R11.
C
MAXWRK = DBLE( N )
IF( RANK.LT.N ) THEN
C
C Get machine parameters.
C
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
C
C Scale A, B if max entries outside range [SMLNUM,BIGNUM].
C
ANRM = DLANTR( 'MaxNorm', 'Upper', 'Non-unit', RANK, N, A, LDA,
$ DWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
C
C Scale matrix norm up to SMLNUM.
C
CALL DLASCL( 'Upper', 0, 0, ANRM, SMLNUM, RANK, N, A, LDA,
$ INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
C
C Scale matrix norm down to BIGNUM.
C
CALL DLASCL( 'Upper', 0, 0, ANRM, BIGNUM, RANK, N, A, LDA,
$ INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
C
C Matrix all zero. Return zero solution.
C
CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, B, LDB )
DWORK( 1 ) = ONE
RETURN
END IF
C
BNRM = DLANGE( 'MaxNorm', M, NRHS, B, LDB, DWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
C
C Scale matrix norm up to SMLNUM.
C
CALL DLASCL( 'General', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
C
C Scale matrix norm down to BIGNUM.
C
CALL DLASCL( 'General', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
C
C [R11,R12] = [ T11, 0 ] * Z.
C Details of Householder rotations are stored in TAU.
C Workspace need RANK, prefer RANK*NB.
C
CALL DTZRZF( RANK, N, A, LDA, TAU, DWORK, LDWORK, INFO )
MAXWRK = MAX( MAXWRK, DWORK( 1 ) )
END IF
C
C B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS).
C
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, ONE, A, LDA, B, LDB )
C
IF( RANK.LT.N ) THEN
C
CALL DLASET( 'Full', N-RANK, NRHS, ZERO, ZERO, B( RANK+1, 1 ),
$ LDB )
C
C B(1:N,1:NRHS) := Z' * B(1:N,1:NRHS).
C Workspace need NRHS, prefer NRHS*NB.
C
CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
$ LDA, TAU, B, LDB, DWORK, LDWORK, INFO )
MAXWRK = MAX( MAXWRK, DWORK( 1 ) )
C
C Undo scaling.
C
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'General', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB,
$ INFO )
CALL DLASCL( 'Upper', 0, 0, SMLNUM, ANRM, RANK, RANK, A,
$ LDA, INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'General', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB,
$ INFO )
CALL DLASCL( 'Upper', 0, 0, BIGNUM, ANRM, RANK, RANK, A,
$ LDA, INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'General', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'General', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB,
$ INFO )
END IF
END IF
C
C B(1:N,1:NRHS) := P * B(1:N,1:NRHS).
C Workspace N.
C
DO 20 J = 1, NRHS
C
DO 10 I = 1, N
DWORK( JPVT( I ) ) = B( I, J )
10 CONTINUE
C
CALL DCOPY( N, DWORK, 1, B( 1, J ), 1 )
20 CONTINUE
C
DWORK( 1 ) = MAXWRK
RETURN
C
C *** Last line of MB02QY ***
END
|