1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
SUBROUTINE MB02UD( FACT, SIDE, TRANS, JOBP, M, N, ALPHA, RCOND,
$ RANK, R, LDR, Q, LDQ, SV, B, LDB, RP, LDRP,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute the minimum norm least squares solution of one of the
C following linear systems
C
C op(R)*X = alpha*B, (1)
C X*op(R) = alpha*B, (2)
C
C where alpha is a real scalar, op(R) is either R or its transpose,
C R', R is an L-by-L real upper triangular matrix, B is an M-by-N
C real matrix, and L = M for (1), or L = N for (2). Singular value
C decomposition, R = Q*S*P', is used, assuming that R is rank
C deficient.
C
C ARGUMENTS
C
C Mode Parameters
C
C FACT CHARACTER*1
C Specifies whether R has been previously factored or not,
C as follows:
C = 'F': R has been factored and its rank and singular
C value decomposition, R = Q*S*P', are available;
C = 'N': R has not been factored and its singular value
C decomposition, R = Q*S*P', should be computed.
C
C SIDE CHARACTER*1
C Specifies whether op(R) appears on the left or right
C of X as follows:
C = 'L': Solve op(R)*X = alpha*B (op(R) is on the left);
C = 'R': Solve X*op(R) = alpha*B (op(R) is on the right).
C
C TRANS CHARACTER*1
C Specifies the form of op(R) to be used as follows:
C = 'N': op(R) = R;
C = 'T': op(R) = R';
C = 'C': op(R) = R'.
C
C JOBP CHARACTER*1
C Specifies whether or not the pseudoinverse of R is to be
C computed or it is available as follows:
C = 'P': Compute pinv(R), if FACT = 'N', or
C use pinv(R), if FACT = 'F';
C = 'N': Do not compute or use pinv(R).
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix B. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix B. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then B need not be
C set before entry.
C
C RCOND (input) DOUBLE PRECISION
C RCOND is used to determine the effective rank of R.
C Singular values of R satisfying Sv(i) <= RCOND*Sv(1) are
C treated as zero. If RCOND <= 0, then EPS is used instead,
C where EPS is the relative machine precision (see LAPACK
C Library routine DLAMCH). RCOND <= 1.
C RCOND is not used if FACT = 'F'.
C
C RANK (input or output) INTEGER
C The rank of matrix R.
C RANK is an input parameter when FACT = 'F', and an output
C parameter when FACT = 'N'. L >= RANK >= 0.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,L)
C On entry, if FACT = 'F', the leading L-by-L part of this
C array must contain the L-by-L orthogonal matrix P' from
C singular value decomposition, R = Q*S*P', of the matrix R;
C if JOBP = 'P', the first RANK rows of P' are assumed to be
C scaled by inv(S(1:RANK,1:RANK)).
C On entry, if FACT = 'N', the leading L-by-L upper
C triangular part of this array must contain the upper
C triangular matrix R.
C On exit, if INFO = 0, the leading L-by-L part of this
C array contains the L-by-L orthogonal matrix P', with its
C first RANK rows scaled by inv(S(1:RANK,1:RANK)), when
C JOBP = 'P'.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,L).
C
C Q (input or output) DOUBLE PRECISION array, dimension
C (LDQ,L)
C On entry, if FACT = 'F', the leading L-by-L part of this
C array must contain the L-by-L orthogonal matrix Q from
C singular value decomposition, R = Q*S*P', of the matrix R.
C If FACT = 'N', this array need not be set on entry, and
C on exit, if INFO = 0, the leading L-by-L part of this
C array contains the orthogonal matrix Q.
C
C LDQ INTEGER
C The leading dimension of array Q. LDQ >= MAX(1,L).
C
C SV (input or output) DOUBLE PRECISION array, dimension (L)
C On entry, if FACT = 'F', the first RANK entries of this
C array must contain the reciprocal of the largest RANK
C singular values of the matrix R, and the last L-RANK
C entries of this array must contain the remaining singular
C values of R sorted in descending order.
C If FACT = 'N', this array need not be set on input, and
C on exit, if INFO = 0, the first RANK entries of this array
C contain the reciprocal of the largest RANK singular values
C of the matrix R, and the last L-RANK entries of this array
C contain the remaining singular values of R sorted in
C descending order.
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, if ALPHA <> 0, the leading M-by-N part of this
C array must contain the matrix B.
C On exit, if INFO = 0 and RANK > 0, the leading M-by-N part
C of this array contains the M-by-N solution matrix X.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C RP (input or output) DOUBLE PRECISION array, dimension
C (LDRP,L)
C On entry, if FACT = 'F', JOBP = 'P', and RANK > 0, the
C leading L-by-L part of this array must contain the L-by-L
C matrix pinv(R), the Moore-Penrose pseudoinverse of R.
C On exit, if FACT = 'N', JOBP = 'P', and RANK > 0, the
C leading L-by-L part of this array contains the L-by-L
C matrix pinv(R), the Moore-Penrose pseudoinverse of R.
C If JOBP = 'N', this array is not referenced.
C
C LDRP INTEGER
C The leading dimension of array RP.
C LDRP >= MAX(1,L), if JOBP = 'P'.
C LDRP >= 1, if JOBP = 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK;
C if INFO = i, 1 <= i <= L, then DWORK(2:L) contain the
C unconverged superdiagonal elements of an upper bidiagonal
C matrix D whose diagonal is in SV (not necessarily sorted).
C D satisfies R = Q*D*P', so it has the same singular
C values as R, and singular vectors related by Q and P'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,L), if FACT = 'F';
C LDWORK >= MAX(1,5*L), if FACT = 'N'.
C For optimum performance LDWORK should be larger than
C MAX(1,L,M*N), if FACT = 'F';
C MAX(1,5*L,M*N), if FACT = 'N'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, i = 1:L, the SVD algorithm has failed
C to converge. In this case INFO specifies how many
C superdiagonals did not converge (see the description
C of DWORK); this failure is not likely to occur.
C
C METHOD
C
C The L-by-L upper triangular matrix R is factored as R = Q*S*P',
C if FACT = 'N', using SLICOT Library routine MB03UD, where Q and P
C are L-by-L orthogonal matrices and S is an L-by-L diagonal matrix
C with non-negative diagonal elements, SV(1), SV(2), ..., SV(L),
C ordered decreasingly. Then, the effective rank of R is estimated,
C and matrix (or matrix-vector) products and scalings are used to
C compute X. If FACT = 'F', only matrix (or matrix-vector) products
C and scalings are performed.
C
C FURTHER COMMENTS
C
C Option JOBP = 'P' should be used only if the pseudoinverse is
C really needed. Usually, it is possible to avoid the use of
C pseudoinverse, by computing least squares solutions.
C The routine uses BLAS 3 calculations if LDWORK >= M*N, and BLAS 2
C calculations, otherwise. No advantage of any additional workspace
C larger than L is taken for matrix products, but the routine can
C be called repeatedly for chunks of columns of B, if LDWORK < M*N.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute of Informatics, Bucharest, Oct. 1999.
C
C REVISIONS
C
C V. Sima, Feb. 2000.
C
C KEYWORDS
C
C Bidiagonalization, orthogonal transformation, singular value
C decomposition, singular values, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER FACT, JOBP, SIDE, TRANS
INTEGER INFO, LDB, LDQ, LDR, LDRP, LDWORK, M, N, RANK
DOUBLE PRECISION ALPHA, RCOND
C .. Array Arguments ..
DOUBLE PRECISION B(LDB,*), DWORK(*), Q(LDQ,*), R(LDR,*),
$ RP(LDRP,*), SV(*)
C .. Local Scalars ..
LOGICAL LEFT, NFCT, PINV, TRAN
CHARACTER*1 NTRAN
INTEGER I, L, MAXWRK, MINWRK, MN
DOUBLE PRECISION TOLL
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLACPY, DLASET, MB01SD,
$ MB03UD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
C Check the input scalar arguments.
C
INFO = 0
NFCT = LSAME( FACT, 'N' )
LEFT = LSAME( SIDE, 'L' )
PINV = LSAME( JOBP, 'P' )
TRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
IF( LEFT ) THEN
L = M
ELSE
L = N
END IF
MN = M*N
IF( .NOT.NFCT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -2
ELSE IF( .NOT.TRAN .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
INFO = -3
ELSE IF( .NOT.PINV .AND. .NOT.LSAME( JOBP, 'N' ) ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( NFCT .AND. RCOND.GT.ONE ) THEN
INFO = -8
ELSE IF( .NOT.NFCT .AND. ( RANK.LT.ZERO .OR. RANK.GT.L ) ) THEN
INFO = -9
ELSE IF( LDR.LT.MAX( 1, L ) ) THEN
INFO = -11
ELSE IF( LDQ.LT.MAX( 1, L ) ) THEN
INFO = -13
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDRP.LT.1 .OR. ( PINV .AND. LDRP.LT.L ) ) THEN
INFO = -18
END IF
C
C Compute workspace
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately following
C subroutine, as returned by ILAENV.)
C
MINWRK = 1
IF( INFO.EQ.0 .AND. LDWORK.GE.1 .AND. L.GT.0 ) THEN
MINWRK = MAX( 1, L )
MAXWRK = MAX( MINWRK, MN )
IF( NFCT ) THEN
MAXWRK = MAX( MAXWRK, 3*L+2*L*
$ ILAENV( 1, 'DGEBRD', ' ', L, L, -1, -1 ) )
MAXWRK = MAX( MAXWRK, 3*L+L*
$ ILAENV( 1, 'DORGBR', 'Q', L, L, L, -1 ) )
MAXWRK = MAX( MAXWRK, 3*L+L*
$ ILAENV( 1, 'DORGBR', 'P', L, L, L, -1 ) )
MINWRK = MAX( 1, 5*L )
MAXWRK = MAX( MAXWRK, MINWRK )
END IF
END IF
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -20
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02UD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( L.EQ.0 ) THEN
IF( NFCT )
$ RANK = 0
DWORK(1) = ONE
RETURN
END IF
C
IF( NFCT ) THEN
C
C Compute the SVD of R, R = Q*S*P'.
C Matrix Q is computed in the array Q, and P' overwrites R.
C Workspace: need 5*L;
C prefer larger.
C
CALL MB03UD( 'Vectors', 'Vectors', L, R, LDR, Q, LDQ, SV,
$ DWORK, LDWORK, INFO )
IF ( INFO.NE.0 )
$ RETURN
C
C Use the default tolerance, if required.
C
TOLL = RCOND
IF( TOLL.LE.ZERO )
$ TOLL = DLAMCH( 'Precision' )
TOLL = MAX( TOLL*SV(1), DLAMCH( 'Safe minimum' ) )
C
C Estimate the rank of R.
C
DO 10 I = 1, L
IF ( TOLL.GT.SV(I) )
$ GO TO 20
10 CONTINUE
C
I = L + 1
20 CONTINUE
RANK = I - 1
C
DO 30 I = 1, RANK
SV(I) = ONE / SV(I)
30 CONTINUE
C
IF( PINV .AND. RANK.GT.0 ) THEN
C
C Compute pinv(S)'*P' in R.
C
CALL MB01SD( 'Row scaling', RANK, L, R, LDR, SV, SV )
C
C Compute pinv(R) = P*pinv(S)*Q' in RP.
C
CALL DGEMM( 'Transpose', 'Transpose', L, L, RANK, ONE, R,
$ LDR, Q, LDQ, ZERO, RP, LDRP )
END IF
END IF
C
C Return if min(M,N) = 0 or RANK = 0.
C
IF( MIN( M, N ).EQ.0 .OR. RANK.EQ.0 ) THEN
DWORK(1) = MAXWRK
RETURN
END IF
C
C Set X = 0 if alpha = 0.
C
IF( ALPHA.EQ.ZERO ) THEN
CALL DLASET( 'Full', M, N, ZERO, ZERO, B, LDB )
DWORK(1) = MAXWRK
RETURN
END IF
C
IF( PINV ) THEN
C
IF( LEFT ) THEN
C
C Compute alpha*op(pinv(R))*B in workspace and save it in B.
C Workspace: need M (BLAS 2);
C prefer M*N (BLAS 3).
C
IF( LDWORK.GE.MN ) THEN
CALL DGEMM( TRANS, 'NoTranspose', M, N, M, ALPHA,
$ RP, LDRP, B, LDB, ZERO, DWORK, M )
CALL DLACPY( 'Full', M, N, DWORK, M, B, LDB )
ELSE
C
DO 40 I = 1, N
CALL DGEMV( TRANS, M, M, ALPHA, RP, LDRP, B(1,I), 1,
$ ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, B(1,I), 1 )
40 CONTINUE
C
END IF
ELSE
C
C Compute alpha*B*op(pinv(R)) in workspace and save it in B.
C Workspace: need N (BLAS 2);
C prefer M*N (BLAS 3).
C
IF( LDWORK.GE.MN ) THEN
CALL DGEMM( 'NoTranspose', TRANS, M, N, N, ALPHA, B, LDB,
$ RP, LDRP, ZERO, DWORK, M )
CALL DLACPY( 'Full', M, N, DWORK, M, B, LDB )
ELSE
C
IF( TRAN ) THEN
NTRAN = 'N'
ELSE
NTRAN = 'T'
END IF
C
DO 50 I = 1, M
CALL DGEMV( NTRAN, N, N, ALPHA, RP, LDRP, B(I,1), LDB,
$ ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, B(I,1), LDB )
50 CONTINUE
C
END IF
END IF
C
ELSE
C
IF( LEFT ) THEN
C
C Compute alpha*P*pinv(S)*Q'*B or alpha*Q*pinv(S)'*P'*B.
C Workspace: need M (BLAS 2);
C prefer M*N (BLAS 3).
C
IF( LDWORK.GE.MN ) THEN
IF( TRAN ) THEN
C
C Compute alpha*P'*B in workspace.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, M,
$ ALPHA, R, LDR, B, LDB, ZERO, DWORK, M )
C
C Compute alpha*pinv(S)'*P'*B.
C
CALL MB01SD( 'Row scaling', RANK, N, DWORK, M, SV,
$ SV )
C
C Compute alpha*Q*pinv(S)'*P'*B.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, RANK,
$ ONE, Q, LDQ, DWORK, M, ZERO, B, LDB )
ELSE
C
C Compute alpha*Q'*B in workspace.
C
CALL DGEMM( 'Transpose', 'NoTranspose', M, N, M,
$ ALPHA, Q, LDQ, B, LDB, ZERO, DWORK, M )
C
C Compute alpha*pinv(S)*Q'*B.
C
CALL MB01SD( 'Row scaling', RANK, N, DWORK, M, SV,
$ SV )
C
C Compute alpha*P*pinv(S)*Q'*B.
C
CALL DGEMM( 'Transpose', 'NoTranspose', M, N, RANK,
$ ONE, R, LDR, DWORK, M, ZERO, B, LDB )
END IF
ELSE
IF( TRAN ) THEN
C
C Compute alpha*P'*B in B using workspace.
C
DO 60 I = 1, N
CALL DGEMV( 'NoTranspose', M, M, ALPHA, R, LDR,
$ B(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, B(1,I), 1 )
60 CONTINUE
C
C Compute alpha*pinv(S)'*P'*B.
C
CALL MB01SD( 'Row scaling', RANK, N, B, LDB, SV, SV )
C
C Compute alpha*Q*pinv(S)'*P'*B in B using workspace.
C
DO 70 I = 1, N
CALL DGEMV( 'NoTranspose', M, RANK, ONE, Q, LDQ,
$ B(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, B(1,I), 1 )
70 CONTINUE
ELSE
C
C Compute alpha*Q'*B in B using workspace.
C
DO 80 I = 1, N
CALL DGEMV( 'Transpose', M, M, ALPHA, Q, LDQ,
$ B(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, B(1,I), 1 )
80 CONTINUE
C
C Compute alpha*pinv(S)*Q'*B.
C
CALL MB01SD( 'Row scaling', RANK, N, B, LDB, SV, SV )
C
C Compute alpha*P*pinv(S)*Q'*B in B using workspace.
C
DO 90 I = 1, N
CALL DGEMV( 'Transpose', RANK, M, ONE, R, LDR,
$ B(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, B(1,I), 1 )
90 CONTINUE
END IF
END IF
ELSE
C
C Compute alpha*B*P*pinv(S)*Q' or alpha*B*Q*pinv(S)'*P'.
C Workspace: need N (BLAS 2);
C prefer M*N (BLAS 3).
C
IF( LDWORK.GE.MN ) THEN
IF( TRAN ) THEN
C
C Compute alpha*B*Q in workspace.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, N,
$ ALPHA, B, LDB, Q, LDQ, ZERO, DWORK, M )
C
C Compute alpha*B*Q*pinv(S)'.
C
CALL MB01SD( 'Column scaling', M, RANK, DWORK, M, SV,
$ SV )
C
C Compute alpha*B*Q*pinv(S)'*P' in B.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, RANK,
$ ONE, DWORK, M, R, LDR, ZERO, B, LDB )
ELSE
C
C Compute alpha*B*P in workspace.
C
CALL DGEMM( 'NoTranspose', 'Transpose', M, N, N,
$ ALPHA, B, LDB, R, LDR, ZERO, DWORK, M )
C
C Compute alpha*B*P*pinv(S).
C
CALL MB01SD( 'Column scaling', M, RANK, DWORK, M, SV,
$ SV )
C
C Compute alpha*B*P*pinv(S)*Q' in B.
C
CALL DGEMM( 'NoTranspose', 'Transpose', M, N, RANK,
$ ONE, DWORK, M, Q, LDQ, ZERO, B, LDB )
END IF
ELSE
IF( TRAN ) THEN
C
C Compute alpha*B*Q in B using workspace.
C
DO 100 I = 1, M
CALL DGEMV( 'Transpose', N, N, ALPHA, Q, LDQ,
$ B(I,1), LDB, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, B(I,1), LDB )
100 CONTINUE
C
C Compute alpha*B*Q*pinv(S)'.
C
CALL MB01SD( 'Column scaling', M, RANK, B, LDB, SV,
$ SV )
C
C Compute alpha*B*Q*pinv(S)'*P' in B using workspace.
C
DO 110 I = 1, M
CALL DGEMV( 'Transpose', RANK, N, ONE, R, LDR,
$ B(I,1), LDB, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, B(I,1), LDB )
110 CONTINUE
C
ELSE
C
C Compute alpha*B*P in B using workspace.
C
DO 120 I = 1, M
CALL DGEMV( 'NoTranspose', N, N, ALPHA, R, LDR,
$ B(I,1), LDB, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, B(I,1), LDB )
120 CONTINUE
C
C Compute alpha*B*P*pinv(S).
C
CALL MB01SD( 'Column scaling', M, RANK, B, LDB, SV,
$ SV )
C
C Compute alpha*B*P*pinv(S)*Q' in B using workspace.
C
DO 130 I = 1, M
CALL DGEMV( 'NoTranspose', N, RANK, ONE, Q, LDQ,
$ B(I,1), LDB, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, B(I,1), LDB )
130 CONTINUE
END IF
END IF
END IF
END IF
C
C Return optimal workspace in DWORK(1).
C
DWORK(1) = MAXWRK
C
RETURN
C *** Last line of MB02UD ***
END
|