1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
SUBROUTINE MB03UD( JOBQ, JOBP, N, A, LDA, Q, LDQ, SV, DWORK,
$ LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute all, or part, of the singular value decomposition of a
C real upper triangular matrix.
C
C The N-by-N upper triangular matrix A is factored as A = Q*S*P',
C where Q and P are N-by-N orthogonal matrices and S is an
C N-by-N diagonal matrix with non-negative diagonal elements,
C SV(1), SV(2), ..., SV(N), ordered such that
C
C SV(1) >= SV(2) >= ... >= SV(N) >= 0.
C
C The columns of Q are the left singular vectors of A, the diagonal
C elements of S are the singular values of A and the columns of P
C are the right singular vectors of A.
C
C Either or both of Q and P' may be requested.
C When P' is computed, it is returned in A.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBQ CHARACTER*1
C Specifies whether the user wishes to compute the matrix Q
C of left singular vectors as follows:
C = 'V': Left singular vectors are computed;
C = 'N': No left singular vectors are computed.
C
C JOBP CHARACTER*1
C Specifies whether the user wishes to compute the matrix P'
C of right singular vectors as follows:
C = 'V': Right singular vectors are computed;
C = 'N': No right singular vectors are computed.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix A.
C On exit, if JOBP = 'V', the leading N-by-N part of this
C array contains the N-by-N orthogonal matrix P'; otherwise
C the N-by-N upper triangular part of A is used as internal
C workspace. The strictly lower triangular part of A is set
C internally to zero before the reduction to bidiagonal form
C is performed.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
C If JOBQ = 'V', the leading N-by-N part of this array
C contains the orthogonal matrix Q.
C If JOBQ = 'N', Q is not referenced.
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= 1, and when JOBQ = 'V', LDQ >= MAX(1,N).
C
C SV (output) DOUBLE PRECISION array, dimension (N)
C The N singular values of the matrix A, sorted in
C descending order.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK;
C if INFO > 0, DWORK(2:N) contains the unconverged
C superdiagonal elements of an upper bidiagonal matrix B
C whose diagonal is in SV (not necessarily sorted).
C B satisfies A = Q*B*P', so it has the same singular
C values as A, and singular vectors related by Q and P'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,5*N).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: the QR algorithm has failed to converge. In this
C case INFO specifies how many superdiagonals did not
C converge (see the description of DWORK).
C This failure is not likely to occur.
C
C METHOD
C
C The routine reduces A to bidiagonal form by means of elementary
C reflectors and then uses the QR algorithm on the bidiagonal form.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute of Informatics, Bucharest, and
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C March 1998. Based on the RASP routine DTRSVD.
C
C REVISIONS
C
C V. Sima, Feb. 2000.
C
C KEYWORDS
C
C Bidiagonalization, orthogonal transformation, singular value
C decomposition, singular values, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBP, JOBQ
INTEGER INFO, LDA, LDQ, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), Q(LDQ,*), SV(*)
C .. Local Scalars ..
LOGICAL WANTQ, WANTP
INTEGER I, IE, ISCL, ITAUP, ITAUQ, JWORK, MAXWRK,
$ MINWRK, NCOLP, NCOLQ
DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANTR
EXTERNAL DLAMCH, DLANTR, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DBDSQR, DGEBRD, DLACPY, DLASCL, DLASET, DORGBR,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
C .. Executable Statements ..
C
C Check the input scalar arguments.
C
INFO = 0
WANTQ = LSAME( JOBQ, 'V' )
WANTP = LSAME( JOBP, 'V' )
MINWRK = 1
IF( .NOT.WANTQ .AND. .NOT.LSAME( JOBQ, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.WANTP .AND. .NOT.LSAME( JOBP, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) .OR.
$ ( .NOT.WANTQ .AND. LDQ.LT.1 ) ) THEN
INFO = -7
END IF
C
C Compute workspace
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately following
C subroutine, as returned by ILAENV.)
C
IF( INFO.EQ.0 .AND. LDWORK.GE.1 .AND. N.GT.0 ) THEN
MAXWRK = 3*N+2*N*ILAENV( 1, 'DGEBRD', ' ', N, N, -1, -1 )
IF( WANTQ )
$ MAXWRK = MAX( MAXWRK, 3*N+N*
$ ILAENV( 1, 'DORGBR', 'Q', N, N, N, -1 ) )
IF( WANTP )
$ MAXWRK = MAX( MAXWRK, 3*N+N*
$ ILAENV( 1, 'DORGBR', 'P', N, N, N, -1 ) )
MINWRK = 5*N
MAXWRK = MAX( MAXWRK, MINWRK )
DWORK(1) = MAXWRK
END IF
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03UD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Get machine constants.
C
EPS = DLAMCH( 'P' )
SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
BIGNUM = ONE / SMLNUM
C
C Scale A if max entry outside range [SMLNUM,BIGNUM].
C
ANRM = DLANTR( 'Max', 'Upper', 'Non-unit', N, N, A, LDA, DUM )
ISCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ISCL = 1
CALL DLASCL( 'Upper', 0, 0, ANRM, SMLNUM, N, N, A, LDA, INFO )
ELSE IF( ANRM.GT.BIGNUM ) THEN
ISCL = 1
CALL DLASCL( 'Upper', 0, 0, ANRM, BIGNUM, N, N, A, LDA, INFO )
END IF
C
C Zero out below.
C
IF ( N.GT.1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, A(2,1), LDA )
C
C Find the singular values and optionally the singular vectors
C of the upper triangular matrix A.
C
IE = 1
ITAUQ = IE + N
ITAUP = ITAUQ + N
JWORK = ITAUP + N
C
C First reduce the matrix to bidiagonal form. The diagonal
C elements will be in SV and the superdiagonals in DWORK(IE).
C (Workspace: need 4*N, prefer 3*N+2*N*NB)
C
CALL DGEBRD( N, N, A, LDA, SV, DWORK(IE), DWORK(ITAUQ),
$ DWORK(ITAUP), DWORK(JWORK), LDWORK-JWORK+1, INFO )
IF( WANTQ ) THEN
C
C Generate the transformation matrix Q corresponding to the
C left singular vectors.
C (Workspace: need 4*N, prefer 3*N+N*NB)
C
NCOLQ = N
CALL DLACPY( 'Lower', N, N, A, LDA, Q, LDQ )
CALL DORGBR( 'Q', N, N, N, Q, LDQ, DWORK(ITAUQ), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
ELSE
NCOLQ = 0
END IF
IF( WANTP ) THEN
C
C Generate the transformation matrix P' corresponding to the
C right singular vectors.
C (Workspace: need 4*N, prefer 3*N+N*NB)
C
NCOLP = N
CALL DORGBR( 'P', N, N, N, A, LDA, DWORK(ITAUP), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
ELSE
NCOLP = 0
END IF
JWORK = IE + N
C
C Perform bidiagonal QR iteration, to obtain all or part of the
C singular value decomposition of A.
C (Workspace: need 5*N)
C
CALL DBDSQR( 'U', N, NCOLP, NCOLQ, 0, SV, DWORK(IE), A, LDA,
$ Q, LDQ, DUM, 1, DWORK(JWORK), INFO )
C
C If DBDSQR failed to converge, copy unconverged superdiagonals
C to DWORK(2:N).
C
IF( INFO.NE.0 ) THEN
DO 10 I = N - 1, 1, -1
DWORK(I+1) = DWORK(I+IE-1)
10 CONTINUE
END IF
C
C Undo scaling if necessary.
C
IF( ISCL.EQ.1 ) THEN
IF( ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, N, 1, SV, N, INFO )
IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, N-1, 1, DWORK(2), N,
$ INFO )
IF( ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, N, 1, SV, N, INFO )
IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, N-1, 1, DWORK(2), N,
$ INFO )
END IF
C
C Return optimal workspace in DWORK(1).
C
DWORK(1) = MAXWRK
C
RETURN
C *** Last line of MB03UD ***
END
|