1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
SUBROUTINE MB04ID( N, M, P, L, A, LDA, B, LDB, TAU, DWORK, LDWORK,
$ INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute a QR factorization of an n-by-m matrix A (A = Q * R),
C having a p-by-min(p,m) zero triangle in the lower left-hand side
C corner, as shown below, for n = 8, m = 7, and p = 2:
C
C [ x x x x x x x ]
C [ x x x x x x x ]
C [ x x x x x x x ]
C [ x x x x x x x ]
C A = [ x x x x x x x ],
C [ x x x x x x x ]
C [ 0 x x x x x x ]
C [ 0 0 x x x x x ]
C
C and optionally apply the transformations to an n-by-l matrix B
C (from the left). The problem structure is exploited. This
C computation is useful, for instance, in combined measurement and
C time update of one iteration of the time-invariant Kalman filter
C (square root information filter).
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of rows of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrix A. M >= 0.
C
C P (input) INTEGER
C The order of the zero triagle. P >= 0.
C
C L (input) INTEGER
C The number of columns of the matrix B. L >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
C On entry, the leading N-by-M part of this array must
C contain the matrix A. The elements corresponding to the
C zero P-by-MIN(P,M) lower trapezoidal/triangular part
C (if P > 0) are not referenced.
C On exit, the elements on and above the diagonal of this
C array contain the MIN(N,M)-by-M upper trapezoidal matrix
C R (R is upper triangular, if N >= M) of the QR
C factorization, and the relevant elements below the
C diagonal contain the trailing components (the vectors v,
C see Method) of the elementary reflectors used in the
C factorization.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,L)
C On entry, the leading N-by-L part of this array must
C contain the matrix B.
C On exit, the leading N-by-L part of this array contains
C the updated matrix B.
C If L = 0, this array is not referenced.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,N) if L > 0;
C LDB >= 1 if L = 0.
C
C TAU (output) DOUBLE PRECISION array, dimension MIN(N,M)
C The scalar factors of the elementary reflectors used.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK The length of the array DWORK.
C LDWORK >= MAX(1,M-1,M-P,L).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine uses min(N,M) Householder transformations exploiting
C the zero pattern of the matrix. A Householder matrix has the form
C
C ( 1 ),
C H = I - tau *u *u', u = ( v )
C i i i i i ( i)
C
C where v is an (N-P+I-2)-vector. The components of v are stored
C i i
C in the i-th column of A, beginning from the location i+1, and
C tau is stored in TAU(i).
C i
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary reflector, QR factorization, orthogonal transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, L, LDA, LDB, LDWORK, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), TAU(*)
C .. Local Scalars ..
INTEGER I
DOUBLE PRECISION FIRST, WRKOPT
C .. External Subroutines ..
EXTERNAL DGEQRF, DLARF, DLARFG, DORMQR, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( L.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( ( L.EQ.0 .AND. LDB.LT.1 ) .OR.
$ ( L.GT.0 .AND. LDB.LT.MAX( 1, N ) ) ) THEN
INFO = -8
ELSE IF( LDWORK.LT.MAX( 1, M - 1, M - P, L ) ) THEN
INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB04ID', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( M, N ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
ELSE IF( N.LE.P+1 ) THEN
DO 5 I = 1, MIN( N, M )
TAU(I) = ZERO
5 CONTINUE
DWORK(1) = ONE
RETURN
END IF
C
C Annihilate the subdiagonal elements of A and apply the
C transformations to B, if L > 0.
C Workspace: need MAX(M-1,L).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
DO 10 I = 1, MIN( P, M )
C
C Exploit the structure of the I-th column of A.
C
CALL DLARFG( N-P, A(I,I), A(I+1,I), 1, TAU(I) )
IF( TAU(I).NE.ZERO ) THEN
C
FIRST = A(I,I)
A(I,I) = ONE
C
IF ( I.LT.M ) CALL DLARF( 'Left', N-P, M-I, A(I,I), 1,
$ TAU(I), A(I,I+1), LDA, DWORK )
IF ( L.GT.0 ) CALL DLARF( 'Left', N-P, L, A(I,I), 1, TAU(I),
$ B(I,1), LDB, DWORK )
C
A(I,I) = FIRST
END IF
10 CONTINUE
C
WRKOPT = MAX( ONE, DBLE( M - 1 ), DBLE( L ) )
C
C Fast QR factorization of the remaining right submatrix, if any.
C Workspace: need M-P; prefer (M-P)*NB.
C
IF( M.GT.P ) THEN
CALL DGEQRF( N-P, M-P, A(P+1,P+1), LDA, TAU(P+1), DWORK,
$ LDWORK, INFO )
WRKOPT = MAX( WRKOPT, DWORK(1) )
C
IF ( L.GT.0 ) THEN
C
C Apply the transformations to B.
C Workspace: need L; prefer L*NB.
C
CALL DORMQR( 'Left', 'Transpose', N-P, L, MIN(N,M)-P,
$ A(P+1,P+1), LDA, TAU(P+1), B(P+1,1), LDB,
$ DWORK, LDWORK, INFO )
WRKOPT = MAX( WRKOPT, DWORK(1) )
END IF
END IF
C
DWORK(1) = WRKOPT
RETURN
C *** Last line of MB04ID ***
END
|