1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
SUBROUTINE MB04IY( SIDE, TRANS, N, M, K, P, A, LDA, TAU, C, LDC,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To overwrite the real n-by-m matrix C with Q' * C, Q * C,
C C * Q', or C * Q, according to the following table
C
C SIDE = 'L' SIDE = 'R'
C TRANS = 'N': Q * C C * Q
C TRANS = 'T': Q'* C C * Q'
C
C where Q is a real orthogonal matrix defined as the product of
C k elementary reflectors
C
C Q = H(1) H(2) . . . H(k)
C
C as returned by SLICOT Library routine MB04ID. Q is of order n
C if SIDE = 'L' and of order m if SIDE = 'R'.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specify if Q or Q' is applied from the left or right,
C as follows:
C = 'L': apply Q or Q' from the left;
C = 'R': apply Q or Q' from the right.
C
C TRANS CHARACTER*1
C Specify if Q or Q' is to be applied, as follows:
C = 'N': apply Q (No transpose);
C = 'T': apply Q' (Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of rows of the matrix C. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrix C. M >= 0.
C
C K (input) INTEGER
C The number of elementary reflectors whose product defines
C the matrix Q.
C N >= K >= 0, if SIDE = 'L';
C M >= K >= 0, if SIDE = 'R'.
C
C P (input) INTEGER
C The order of the zero triagle (or the number of rows of
C the zero trapezoid) in the matrix triangularized by SLICOT
C Library routine MB04ID. P >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,K)
C On input, the elements in the rows i+1:min(n,n-p-1+i) of
C the i-th column, and TAU(i), represent the orthogonal
C reflector H(i), so that matrix Q is the product of
C elementary reflectors: Q = H(1) H(2) . . . H(k).
C A is modified by the routine but restored on exit.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= max(1,N), if SIDE = 'L';
C LDA >= max(1,M), if SIDE = 'R'.
C
C TAU (input) DOUBLE PRECISION array, dimension (K)
C The scalar factors of the elementary reflectors.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C On entry, the leading N-by-M part of this array must
C contain the matrix C.
C On exit, the leading N-by-M part of this array contains
C the updated matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,M), if SIDE = 'L';
C LDWORK >= MAX(1,N), if SIDE = 'R'.
C For optimum performance LDWORK >= M*NB if SIDE = 'L',
C or LDWORK >= N*NB if SIDE = 'R', where NB is the optimal
C block size.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C If SIDE = 'L', each elementary reflector H(i) modifies
C n-p elements of each column of C, for i = 1:p+1, and
C n-i+1 elements, for i = p+2:k.
C If SIDE = 'R', each elementary reflector H(i) modifies
C m-p elements of each row of C, for i = 1:p+1, and
C m-i+1 elements, for i = p+2:k.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Matrix operations, QR decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
C .. Scalar Arguments ..
INTEGER INFO, K, LDA, LDC, LDWORK, M, N, P
CHARACTER SIDE, TRANS
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * ), TAU( * )
C .. Local Scalars ..
LOGICAL LEFT, TRAN
INTEGER I
DOUBLE PRECISION AII, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLARF, DORMQR, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
C Check the scalar input arguments.
C
INFO = 0
LEFT = LSAME( SIDE, 'L' )
TRAN = LSAME( TRANS, 'T' )
C
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. ( LEFT .AND. K.GT.N ) .OR.
$ ( .NOT.LEFT .AND. K.GT.M ) ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( ( LEFT .AND. LDA.LT.MAX( 1, N ) ) .OR.
$ ( .NOT.LEFT .AND. LDA.LT.MAX( 1, M ) ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( ( LEFT .AND. LDWORK.LT.MAX( 1, M ) ) .OR.
$ ( .NOT.LEFT .AND. LDWORK.LT.MAX( 1, N ) ) ) THEN
INFO = -13
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04IY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 .OR. ( LEFT .AND. N.LT.P )
$ .OR. ( .NOT.LEFT .AND. M.LT.P ) ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IF( LEFT ) THEN
WRKOPT = DBLE( M )
IF( TRAN ) THEN
C
DO 10 I = 1, MIN( K, P )
C
C Apply H(i) to C(i:i+n-p-1,1:m), from the left.
C Workspace: need M.
C
AII = A( I, I )
A( I, I ) = ONE
CALL DLARF( SIDE, N-P, M, A( I, I ), 1, TAU( I ),
$ C( I, 1 ), LDC, DWORK )
A( I, I ) = AII
10 CONTINUE
C
IF ( P.LE.MIN( N, K ) ) THEN
C
C Apply H(i) to C, i = p+1:k, from the left.
C Workspace: need M; prefer M*NB.
C
CALL DORMQR( SIDE, TRANS, N-P, M, K-P, A( P+1, P+1 ),
$ LDA, TAU( P+1 ), C( P+1, 1 ), LDC, DWORK,
$ LDWORK, I )
WRKOPT = MAX( WRKOPT, DWORK( 1 ) )
END IF
C
ELSE
C
IF ( P.LE.MIN( N, K ) ) THEN
C
C Apply H(i) to C, i = k:p+1:-1, from the left.
C Workspace: need M; prefer M*NB.
C
CALL DORMQR( SIDE, TRANS, N-P, M, K-P, A( P+1, P+1 ),
$ LDA, TAU( P+1 ), C( P+1, 1 ), LDC, DWORK,
$ LDWORK, I )
WRKOPT = MAX( WRKOPT, DWORK( 1 ) )
END IF
C
DO 20 I = MIN( K, P ), 1, -1
C
C Apply H(i) to C(i:i+n-p-1,1:m), from the left.
C Workspace: need M.
C
AII = A( I, I )
A( I, I ) = ONE
CALL DLARF( SIDE, N-P, M, A( I, I ), 1, TAU( I ),
$ C( I, 1 ), LDC, DWORK )
A( I, I ) = AII
20 CONTINUE
END IF
C
ELSE
C
WRKOPT = DBLE( N )
IF( TRAN ) THEN
C
IF ( P.LE.MIN( M, K ) ) THEN
C
C Apply H(i) to C, i = k:p+1:-1, from the right.
C Workspace: need N; prefer N*NB.
C
CALL DORMQR( SIDE, TRANS, N, M-P, K-P, A( P+1, P+1 ),
$ LDA, TAU( P+1 ), C( 1, P+1 ), LDC, DWORK,
$ LDWORK, I )
WRKOPT = MAX( WRKOPT, DWORK( 1 ) )
END IF
C
DO 30 I = MIN( K, P ), 1, -1
C
C Apply H(i) to C(1:n,i:i+m-p-1), from the right.
C Workspace: need N.
C
AII = A( I, I )
A( I, I ) = ONE
CALL DLARF( SIDE, N, M-P, A( I, I ), 1, TAU( I ),
$ C( 1, I ), LDC, DWORK )
A( I, I ) = AII
30 CONTINUE
C
ELSE
C
DO 40 I = 1, MIN( K, P )
C
C Apply H(i) to C(1:n,i:i+m-p-1), from the right.
C Workspace: need N.
C
AII = A( I, I )
A( I, I ) = ONE
CALL DLARF( SIDE, N, M-P, A( I, I ), 1, TAU( I ),
$ C( 1, I ), LDC, DWORK )
A( I, I ) = AII
40 CONTINUE
C
IF ( P.LE.MIN( M, K ) ) THEN
C
C Apply H(i) to C, i = p+1:k, from the right.
C Workspace: need N; prefer N*NB.
C
CALL DORMQR( SIDE, TRANS, N, M-P, K-P, A( P+1, P+1 ),
$ LDA, TAU( P+1 ), C( 1, P+1 ), LDC, DWORK,
$ LDWORK, I )
WRKOPT = MAX( WRKOPT, DWORK( 1 ) )
END IF
C
END IF
END IF
C
DWORK( 1 ) = WRKOPT
RETURN
C
C *** Last line of MB04IY ***
END
|