1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
SUBROUTINE MB04NY( M, N, V, INCV, TAU, A, LDA, B, LDB, DWORK )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To apply a real elementary reflector H to a real m-by-(n+1)
C matrix C = [ A B ], from the right, where A has one column. H is
C represented in the form
C ( 1 )
C H = I - tau * u *u', u = ( ),
C ( v )
C where tau is a real scalar and v is a real n-vector.
C
C If tau = 0, then H is taken to be the unit matrix.
C
C In-line code is used if H has order < 11.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrices A and B. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix B. N >= 0.
C
C V (input) DOUBLE PRECISION array, dimension
C (1+(N-1)*ABS( INCV ))
C The vector v in the representation of H.
C
C INCV (input) INTEGER
C The increment between the elements of v. INCV <> 0.
C
C TAU (input) DOUBLE PRECISION
C The scalar factor of the elementary reflector H.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,1)
C On entry, the leading M-by-1 part of this array must
C contain the matrix A.
C On exit, the leading M-by-1 part of this array contains
C the updated matrix A (the first column of C * H).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading M-by-N part of this array must
C contain the matrix B.
C On exit, the leading M-by-N part of this array contains
C the updated matrix B (the last n columns of C * H).
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (M)
C DWORK is not referenced if H has order less than 11.
C
C METHOD
C
C The routine applies the elementary reflector H, taking the special
C structure of C into account.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1998.
C Based on LAPACK routines DLARFX and DLATZM.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, elementary reflector, orthogonal
C transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INCV, LDA, LDB, M, N
DOUBLE PRECISION TAU
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ), V( * )
C .. Local Scalars ..
INTEGER IV, J
DOUBLE PRECISION SUM, T1, T2, T3, T4, T5, T6, T7, T8, T9, V1, V2,
$ V3, V4, V5, V6, V7, V8, V9
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGER
C
C .. Executable Statements ..
C
IF( TAU.EQ.ZERO )
$ RETURN
C
C Form C * H, where H has order n+1.
C
GO TO ( 10, 30, 50, 70, 90, 110, 130, 150,
$ 170, 190 ) N+1
C
C Code for general N. Compute
C
C w := C*u, C := C - tau * w * u'.
C
CALL DCOPY( M, A, 1, DWORK, 1 )
CALL DGEMV( 'No transpose', M, N, ONE, B, LDB, V, INCV, ONE,
$ DWORK, 1 )
CALL DAXPY( M, -TAU, DWORK, 1, A, 1 )
CALL DGER( M, N, -TAU, DWORK, 1, V, INCV, B, LDB )
GO TO 210
10 CONTINUE
C
C Special code for 1 x 1 Householder
C
T1 = ONE - TAU
DO 20 J = 1, M
A( J, 1 ) = T1*A( J, 1 )
20 CONTINUE
GO TO 210
30 CONTINUE
C
C Special code for 2 x 2 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
DO 40 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
40 CONTINUE
GO TO 210
50 CONTINUE
C
C Special code for 3 x 3 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
DO 60 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
60 CONTINUE
GO TO 210
70 CONTINUE
C
C Special code for 4 x 4 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
DO 80 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
80 CONTINUE
GO TO 210
90 CONTINUE
C
C Special code for 5 x 5 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
DO 100 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
100 CONTINUE
GO TO 210
110 CONTINUE
C
C Special code for 6 x 6 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
IV = IV + INCV
V5 = V( IV )
T5 = TAU*V5
DO 120 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 ) + V5*B( J, 5 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
B( J, 5 ) = B( J, 5 ) - SUM*T5
120 CONTINUE
GO TO 210
130 CONTINUE
C
C Special code for 7 x 7 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
IV = IV + INCV
V5 = V( IV )
T5 = TAU*V5
IV = IV + INCV
V6 = V( IV )
T6 = TAU*V6
DO 140 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
B( J, 5 ) = B( J, 5 ) - SUM*T5
B( J, 6 ) = B( J, 6 ) - SUM*T6
140 CONTINUE
GO TO 210
150 CONTINUE
C
C Special code for 8 x 8 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
IV = IV + INCV
V5 = V( IV )
T5 = TAU*V5
IV = IV + INCV
V6 = V( IV )
T6 = TAU*V6
IV = IV + INCV
V7 = V( IV )
T7 = TAU*V7
DO 160 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
$ V7*B( J, 7 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
B( J, 5 ) = B( J, 5 ) - SUM*T5
B( J, 6 ) = B( J, 6 ) - SUM*T6
B( J, 7 ) = B( J, 7 ) - SUM*T7
160 CONTINUE
GO TO 210
170 CONTINUE
C
C Special code for 9 x 9 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
IV = IV + INCV
V5 = V( IV )
T5 = TAU*V5
IV = IV + INCV
V6 = V( IV )
T6 = TAU*V6
IV = IV + INCV
V7 = V( IV )
T7 = TAU*V7
IV = IV + INCV
V8 = V( IV )
T8 = TAU*V8
DO 180 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
$ V7*B( J, 7 ) + V8*B( J, 8 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
B( J, 5 ) = B( J, 5 ) - SUM*T5
B( J, 6 ) = B( J, 6 ) - SUM*T6
B( J, 7 ) = B( J, 7 ) - SUM*T7
B( J, 8 ) = B( J, 8 ) - SUM*T8
180 CONTINUE
GO TO 210
190 CONTINUE
C
C Special code for 10 x 10 Householder
C
IV = 1
IF( INCV.LT.0 )
$ IV = (-N+1)*INCV + 1
V1 = V( IV )
T1 = TAU*V1
IV = IV + INCV
V2 = V( IV )
T2 = TAU*V2
IV = IV + INCV
V3 = V( IV )
T3 = TAU*V3
IV = IV + INCV
V4 = V( IV )
T4 = TAU*V4
IV = IV + INCV
V5 = V( IV )
T5 = TAU*V5
IV = IV + INCV
V6 = V( IV )
T6 = TAU*V6
IV = IV + INCV
V7 = V( IV )
T7 = TAU*V7
IV = IV + INCV
V8 = V( IV )
T8 = TAU*V8
IV = IV + INCV
V9 = V( IV )
T9 = TAU*V9
DO 200 J = 1, M
SUM = A( J, 1 ) + V1*B( J, 1 ) + V2*B( J, 2 ) + V3*B( J, 3 ) +
$ V4*B( J, 4 ) + V5*B( J, 5 ) + V6*B( J, 6 ) +
$ V7*B( J, 7 ) + V8*B( J, 8 ) + V9*B( J, 9 )
A( J, 1 ) = A( J, 1 ) - SUM*TAU
B( J, 1 ) = B( J, 1 ) - SUM*T1
B( J, 2 ) = B( J, 2 ) - SUM*T2
B( J, 3 ) = B( J, 3 ) - SUM*T3
B( J, 4 ) = B( J, 4 ) - SUM*T4
B( J, 5 ) = B( J, 5 ) - SUM*T5
B( J, 6 ) = B( J, 6 ) - SUM*T6
B( J, 7 ) = B( J, 7 ) - SUM*T7
B( J, 8 ) = B( J, 8 ) - SUM*T8
B( J, 9 ) = B( J, 9 ) - SUM*T9
200 CONTINUE
210 CONTINUE
RETURN
C *** Last line of MB04NY ***
END
|