1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
SUBROUTINE SB02ND( DICO, FACT, UPLO, JOBL, N, M, P, A, LDA, B,
$ LDB, R, LDR, IPIV, L, LDL, X, LDX, RNORM, F,
$ LDF, OUFACT, IWORK, DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute the optimal feedback matrix F for the problem of
C optimal control given by
C
C -1
C F = (R + B'XB) (B'XA + L') (1)
C
C in the discrete-time case and
C
C -1
C F = R (B'X + L') (2)
C
C in the continuous-time case, where A, B and L are N-by-N, N-by-M
C and N-by-M matrices respectively; R and X are M-by-M and N-by-N
C symmetric matrices respectively.
C
C Optionally, matrix R may be specified in a factored form, and L
C may be zero.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the equation from which F is to be determined,
C as follows:
C = 'D': Equation (1), discrete-time case;
C = 'C': Equation (2), continuous-time case.
C
C FACT CHARACTER*1
C Specifies how the matrix R is given (factored or not), as
C follows:
C = 'N': Array R contains the matrix R;
C = 'D': Array R contains a P-by-M matrix D, where R = D'D;
C = 'C': Array R contains the Cholesky factor of R;
C = 'U': Array R contains the symmetric indefinite UdU' or
C LdL' factorization of R. This option is not
C available for DICO = 'D'.
C
C UPLO CHARACTER*1
C Specifies which triangle of the possibly factored matrix R
C (or R + B'XB, on exit) is or should be stored, as follows:
C = 'U': Upper triangle is stored;
C = 'L': Lower triangle is stored.
C
C JOBL CHARACTER*1
C Specifies whether or not the matrix L is zero, as follows:
C = 'Z': L is zero;
C = 'N': L is nonzero.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and X. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C This parameter must be specified only for FACT = 'D'.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If DICO = 'D', the leading N-by-N part of this array must
C contain the state matrix A of the system.
C If DICO = 'C', this array is not referenced.
C
C LDA INTEGER
C The leading dimension of array A.
C LDA >= MAX(1,N) if DICO = 'D';
C LDA >= 1 if DICO = 'C'.
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input matrix B of the system.
C If DICO = 'D' and FACT = 'D' or 'C', the contents of this
C array is destroyed.
C Otherwise, B is unchanged on exit.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C On entry, if FACT = 'N', the leading M-by-M upper
C triangular part (if UPLO = 'U') or lower triangular part
C (if UPLO = 'L') of this array must contain the upper
C triangular part or lower triangular part, respectively,
C of the symmetric input weighting matrix R.
C On entry, if FACT = 'D', the leading P-by-M part of this
C array must contain the direct transmission matrix D of the
C system.
C On entry, if FACT = 'C', the leading M-by-M upper
C triangular part (if UPLO = 'U') or lower triangular part
C (if UPLO = 'L') of this array must contain the Cholesky
C factor of the positive definite input weighting matrix R
C (as produced by LAPACK routine DPOTRF).
C On entry, if DICO = 'C' and FACT = 'U', the leading M-by-M
C upper triangular part (if UPLO = 'U') or lower triangular
C part (if UPLO = 'L') of this array must contain the
C factors of the UdU' or LdL' factorization, respectively,
C of the symmetric indefinite input weighting matrix R (as
C produced by LAPACK routine DSYTRF).
C The stricly lower triangular part (if UPLO = 'U') or
C stricly upper triangular part (if UPLO = 'L') of this
C array is used as workspace.
C On exit, if OUFACT(1) = 1, and INFO = 0 (or INFO = M+1),
C the leading M-by-M upper triangular part (if UPLO = 'U')
C or lower triangular part (if UPLO = 'L') of this array
C contains the Cholesky factor of the given input weighting
C matrix (for DICO = 'C'), or that of the matrix R + B'XB
C (for DICO = 'D').
C On exit, if OUFACT(1) = 2, and INFO = 0 (or INFO = M+1),
C the leading M-by-M upper triangular part (if UPLO = 'U')
C or lower triangular part (if UPLO = 'L') of this array
C contains the factors of the UdU' or LdL' factorization,
C respectively, of the given input weighting matrix
C (for DICO = 'C'), or that of the matrix R + B'XB
C (for DICO = 'D').
C On exit R is unchanged if FACT = 'U'.
C
C LDR INTEGER.
C The leading dimension of the array R.
C LDR >= MAX(1,M) if FACT <> 'D';
C LDR >= MAX(1,M,P) if FACT = 'D'.
C
C IPIV (input/output) INTEGER array, dimension (M)
C On entry, if FACT = 'U', this array must contain details
C of the interchanges performed and the block structure of
C the d factor in the UdU' or LdL' factorization of matrix R
C (as produced by LAPACK routine DSYTRF).
C On exit, if OUFACT(1) = 2, this array contains details of
C the interchanges performed and the block structure of the
C d factor in the UdU' or LdL' factorization of matrix R (or
C D'D) or R + B'XB (or D'D + B'XB), as produced by LAPACK
C routine DSYTRF.
C This array is not referenced for DICO = 'D' or FACT = 'D',
C or 'C'.
C
C L (input) DOUBLE PRECISION array, dimension (LDL,M)
C If JOBL = 'N', the leading N-by-M part of this array must
C contain the cross weighting matrix L.
C If JOBL = 'Z', this array is not referenced.
C
C LDL INTEGER
C The leading dimension of array L.
C LDL >= MAX(1,N) if JOBL = 'N';
C LDL >= 1 if JOBL = 'Z'.
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, the leading N-by-N part of this array must
C contain the solution matrix X of the algebraic Riccati
C equation as produced by SLICOT Library routines SB02MD or
C SB02OD. Matrix X is assumed non-negative definite.
C On exit, if DICO = 'D', FACT = 'D' or 'C', OUFACT(2) = 1,
C and INFO = 0, the N-by-N upper triangular part of this
C array contains the Cholesky factor of the given matrix X,
C which is found to be positive definite.
C On exit, if DICO = 'D', FACT = 'D' or 'C', OUFACT(2) = 2,
C and INFO = 0, the leading N-by-N part of this array
C contains the matrix of orthonormal eigenvectors of X.
C On exit X is unchanged if DICO = 'C' or FACT = 'N'.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N).
C
C RNORM (input) DOUBLE PRECISION
C If FACT = 'U', this parameter must contain the 1-norm of
C the original matrix R (before factoring it).
C Otherwise, this parameter is not used.
C
C F (output) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array contains the
C optimal feedback matrix F.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C OUFACT (output) INTEGER array, dimension (2)
C Information about the factorization finally used.
C OUFACT(1) = 1: Cholesky factorization of R (or R + B'XB)
C has been used;
C OUFACT(1) = 2: UdU' (if UPLO = 'U') or LdL' (if UPLO =
C 'L') factorization of R (or R + B'XB)
C has been used;
C OUFACT(2) = 1: Cholesky factorization of X has been used;
C OUFACT(2) = 2: Spectral factorization of X has been used.
C The value of OUFACT(2) is not set for DICO = 'C' or for
C DICO = 'D' and FACT = 'N'.
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and DWORK(2) contains the reciprocal condition
C number of the matrix R (for DICO = 'C') or of R + B'XB
C (for DICO = 'D').
C If on exit INFO = 0, and OUFACT(2) = 2, then DWORK(3),...,
C DWORK(N+2) contain the eigenvalues of X, in ascending
C order.
C
C LDWORK INTEGER
C Dimension of working array DWORK.
C LDWORK >= max(2,3*M) if FACT = 'N';
C LDWORK >= max(2,2*M) if FACT = 'U';
C LDWORK >= max(2,3*M) if FACT = 'C', DICO = 'C';
C LDWORK >= N+3*M+2 if FACT = 'C', DICO = 'D';
C LDWORK >= max(2,min(P,M)+M) if FACT = 'D', DICO = 'C';
C LDWORK >= max(N+3*M+2,4*N+1) if FACT = 'D', DICO = 'D'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = i: if the i-th element of the d factor is exactly zero;
C the UdU' (or LdL') factorization has been completed,
C but the block diagonal matrix d is exactly singular;
C = M+1: if the matrix R (if DICO = 'C'), or R + B'XB
C (if DICO = 'D') is numerically singular (to working
C precision);
C = M+2: if one or more of the eigenvalues of X has not
C converged.
C
C METHOD
C
C The optimal feedback matrix F is obtained as the solution to the
C system of linear equations
C
C (R + B'XB) * F = B'XA + L'
C
C in the discrete-time case and
C
C R * F = B'X + L'
C
C in the continuous-time case, with R replaced by D'D if FACT = 'D'.
C The factored form of R, specified by FACT <> 'N', is taken into
C account. If FACT = 'N', Cholesky factorization is tried first, but
C if the coefficient matrix is not positive definite, then UdU' (or
C LdL') factorization is used. The discrete-time case involves
C updating of a triangular factorization of R (or D'D); Cholesky or
C symmetric spectral factorization of X is employed to avoid
C squaring of the condition number of the matrix. When D is given,
C its QR factorization is determined, and the triangular factor is
C used as described above.
C
C NUMERICAL ASPECTS
C
C The algorithm consists of numerically stable steps.
C 3 2
C For DICO = 'C', it requires O(m + mn ) floating point operations
C 2
C if FACT = 'N' and O(mn ) floating point operations, otherwise.
C For DICO = 'D', the operation counts are similar, but additional
C 3
C O(n ) floating point operations may be needed in the worst case.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB02BD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, discrete-time system, matrix algebra, optimal control,
C optimal regulator.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER*1 DICO, FACT, JOBL, UPLO
INTEGER INFO, LDA, LDB, LDF, LDL, LDR, LDWORK, LDX, M,
$ N, P
DOUBLE PRECISION RNORM
C .. Array Arguments ..
INTEGER IPIV(*), IWORK(*), OUFACT(2)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), F(LDF,*),
$ L(LDL,*), R(LDR,*), X(LDX,*)
C .. Local Scalars ..
LOGICAL DISCR, LFACTA, LFACTC, LFACTD, LFACTU, LUPLOU,
$ WITHL
INTEGER I, IFAIL, ITAU, J, JW, JWORK, JZ, WRKOPT
DOUBLE PRECISION EPS, RCOND, RNORMP, TEMP
C .. Local Arrays ..
DOUBLE PRECISION DUMMY(1)
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANSY
EXTERNAL DLAMCH, DLANSY, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DGEQRF, DLASET, DPOCON,
$ DPOTRF, DPOTRS, DSCAL, DSYCON, DSYEV, DSYTRF,
$ DSYTRS, DTRCON, DTRMM, MB04KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
LFACTC = LSAME( FACT, 'C' )
LFACTD = LSAME( FACT, 'D' )
LFACTU = LSAME( FACT, 'U' )
LUPLOU = LSAME( UPLO, 'U' )
WITHL = LSAME( JOBL, 'N' )
LFACTA = LFACTC.OR.LFACTD.OR.LFACTU
C
C Test the input scalar arguments.
C
IF( .NOT.DISCR .AND. .NOT.LSAME( DICO, 'C' ) ) THEN
INFO = -1
ELSE IF( ( .NOT.LFACTA .AND. .NOT.LSAME( FACT, 'N' ) ) .OR.
$ ( DISCR .AND. LFACTU ) ) THEN
INFO = -2
ELSE IF( .NOT.LUPLOU .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -3
ELSE IF( .NOT.WITHL .AND. .NOT.LSAME( JOBL, 'Z' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( P.LT.0 ) THEN
INFO = -7
ELSE IF( ( .NOT.DISCR .AND. LDA.LT.1 ) .OR.
$ ( DISCR .AND. LDA.LT.MAX( 1, N ) ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( ( LDR.LT.MAX( 1, M ) ) .OR.
$ ( LFACTD .AND. LDR.LT.MAX( 1, P ) ) ) THEN
INFO = -13
ELSE IF( ( .NOT.WITHL .AND. LDL.LT.1 ) .OR.
$ ( WITHL .AND. LDL.LT.MAX( 1, N ) ) ) THEN
INFO = -16
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LFACTU ) THEN
IF( RNORM.LT.ZERO )
$ INFO = -19
END IF
IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -21
ELSE IF( ( ( .NOT.LFACTA .OR. ( LFACTC .AND. .NOT.DISCR ) )
$ .AND. LDWORK.LT.MAX( 2, 3*M ) ) .OR.
$ ( LFACTU .AND. LDWORK.LT.MAX( 2, 2*M ) ) .OR.
$ ( DISCR .AND. LFACTC .AND. LDWORK.LT.N + 3*M + 2 ) .OR.
$(.NOT.DISCR .AND. LFACTD .AND. LDWORK.LT.MAX( 2, MIN(P,M) + M ) )
$ .OR.
$ ( DISCR .AND. LFACTD .AND. LDWORK.LT.MAX( N + 3*M + 2,
$ 4*N + 1 ) ) ) THEN
INFO = -25
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB02ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 .OR. ( LFACTD .AND. P.EQ.0 ) ) THEN
DWORK(1) = ONE
DWORK(2) = ONE
RETURN
END IF
C
WRKOPT = 1
EPS = DLAMCH( 'Epsilon' )
C
C Determine the right-hand side of the matrix equation.
C Compute B'X in F.
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
CALL DGEMM( 'Transpose', 'No transpose', M, N, N, ONE, B, LDB, X,
$ LDX, ZERO, F, LDF )
C
IF ( .NOT.LFACTA ) THEN
IF ( DISCR ) THEN
C
C Discrete-time case with R not factored. Compute R + B'XB.
C
IF ( LUPLOU ) THEN
C
DO 10 J = 1, M
CALL DGEMV( 'No transpose', J, N, ONE, F, LDF, B(1,J),
$ 1, ONE, R(1,J), 1 )
10 CONTINUE
C
ELSE
C
DO 20 J = 1, M
CALL DGEMV( 'Transpose', N, J, ONE, B, LDB, F(J,1),
$ LDF, ONE, R(J,1), LDR )
20 CONTINUE
C
END IF
END IF
C
C Compute the 1-norm of the matrix R or R + B'XB.
C Workspace: need M.
C
RNORMP = DLANSY( '1-norm', UPLO, M, R, LDR, DWORK )
WRKOPT = MAX( WRKOPT, M )
END IF
C
IF ( DISCR ) THEN
C
C For discrete-time case, postmultiply B'X by A.
C Workspace: need N.
C
DO 30 I = 1, M
CALL DCOPY( N, F(I,1), LDF, DWORK, 1 )
CALL DGEMV( 'Transpose', N, N, ONE, A, LDA, DWORK, 1, ZERO,
$ F(I,1), LDF )
30 CONTINUE
C
WRKOPT = MAX( WRKOPT, N )
END IF
C
IF( WITHL ) THEN
C
C Add L'.
C
DO 50 I = 1, M
C
DO 40 J = 1, N
F(I,J) = F(I,J) + L(J,I)
40 CONTINUE
C
50 CONTINUE
C
END IF
C
C Solve the matrix equation.
C
IF ( LFACTA ) THEN
C
C Case 1: Matrix R is given in a factored form.
C
IF ( LFACTD ) THEN
C
C Use QR factorization of D.
C Workspace: need min(P,M) + M,
C prefer min(P,M) + M*NB.
C
ITAU = 1
JWORK = ITAU + MIN( P, M )
CALL DGEQRF( P, M, R, LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Make positive the diagonal elements of the triangular
C factor. Construct the strictly lower triangle, if requested.
C
DO 70 I = 1, M
IF ( R(I,I).LT.ZERO ) THEN
C
DO 60 J = I, M
R(I,J) = -R(I,J)
60 CONTINUE
C
END IF
IF ( .NOT.LUPLOU )
$ CALL DCOPY( I-1, R(1,I), 1, R(I,1), LDR )
70 CONTINUE
C
IF ( P.LT.M ) THEN
CALL DLASET( 'Full', M-P, M, ZERO, ZERO, R(P+1,1), LDR )
IF ( .NOT.DISCR ) THEN
DWORK(2) = ZERO
INFO = M + 1
RETURN
END IF
END IF
END IF
C
JW = 1
IF ( DISCR ) THEN
C
C Discrete-time case. Update the factorization for B'XB.
C Try first the Cholesky factorization of X, saving the
C diagonal of X, in order to recover it, if X is not positive
C definite. In the later case, use spectral factorization.
C Workspace: need N.
C Define JW = 1 for Cholesky factorization of X,
C JW = N+3 for spectral factorization of X.
C
CALL DCOPY( N, X, LDX+1, DWORK, 1 )
CALL DPOTRF( 'Upper', N, X, LDX, IFAIL )
IF ( IFAIL.EQ.0 ) THEN
C
C Use Cholesky factorization of X to compute chol(X)*B.
C
OUFACT(2) = 1
CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non unit',
$ N, M, ONE, X, LDX, B, LDB )
ELSE
C
C Use spectral factorization of X, X = UVU'.
C Workspace: need 4*N+1,
C prefer N*(NB+2)+N+2.
C
JW = N + 3
OUFACT(2) = 2
CALL DCOPY( N, DWORK, 1, X, LDX+1 )
CALL DSYEV( 'Vectors', 'Lower', N, X, LDX, DWORK(3),
$ DWORK(JW), LDWORK-JW+1, IFAIL )
IF ( IFAIL.GT.0 ) THEN
INFO = M + 2
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(JW) )+JW-1 )
TEMP = ABS( DWORK(N+2) )*EPS
C
C Count the negligible eigenvalues and compute sqrt(V)U'B.
C Workspace: need 2*N+2.
C
JZ = 0
C
80 CONTINUE
IF ( ABS( DWORK(JZ+3) ).LE.TEMP ) THEN
JZ = JZ + 1
IF ( JZ.LT.N) GO TO 80
END IF
C
DO 90 J = 1, M
CALL DCOPY( N, B(1,J), 1, DWORK(JW), 1 )
CALL DGEMV( 'Transpose', N, N, ONE, X, LDX, DWORK(JW),
$ 1, ZERO, B(1,J), 1 )
90 CONTINUE
C
DO 100 I = JZ + 1, N
CALL DSCAL( M, SQRT( ABS( DWORK(I+2) ) ), B(I,1), LDB
$ )
100 CONTINUE
C
IF ( JZ.GT.0 )
$ CALL DLASET( 'Full', JZ, M, ZERO, ZERO, B, LDB )
END IF
C
C Update the triangular factorization.
C
IF ( .NOT.LUPLOU ) THEN
C
C For efficiency, use the transposed of the lower triangle.
C
DO 110 I = 2, M
CALL DCOPY( I-1, R(I,1), LDR, R(1,I), 1 )
110 CONTINUE
C
END IF
C
C Workspace: need JW+2*M-1.
C
CALL MB04KD( 'Full', M, 0, N, R, LDR, B, LDB, DUMMY, N,
$ DUMMY, M, DWORK(JW), DWORK(JW+N) )
WRKOPT = MAX( WRKOPT, JW + 2*M - 1 )
C
C Make positive the diagonal elements of the triangular
C factor.
C
DO 130 I = 1, M
IF ( R(I,I).LT.ZERO ) THEN
C
DO 120 J = I, M
R(I,J) = -R(I,J)
120 CONTINUE
C
END IF
130 CONTINUE
C
IF ( .NOT.LUPLOU ) THEN
C
C Construct the lower triangle.
C
DO 140 I = 2, M
CALL DCOPY( I-1, R(1,I), 1, R(I,1), LDR )
140 CONTINUE
C
END IF
END IF
C
C Compute the condition number of the coefficient matrix.
C
IF ( .NOT.LFACTU ) THEN
C
C Workspace: need JW+3*M-1.
C
CALL DTRCON( '1-norm', UPLO, 'Non unit', M, R, LDR, RCOND,
$ DWORK(JW), IWORK, IFAIL )
OUFACT(1) = 1
WRKOPT = MAX( WRKOPT, JW + 3*M - 1 )
ELSE
C
C Workspace: need 2*M.
C
CALL DSYCON( UPLO, M, R, LDR, IPIV, RNORM, RCOND, DWORK,
$ IWORK, INFO )
OUFACT(1) = 2
WRKOPT = MAX( WRKOPT, 2*M )
END IF
DWORK(2) = RCOND
IF( RCOND.LT.EPS ) THEN
INFO = M + 1
RETURN
END IF
C
ELSE
C
C Case 2: Matrix R is given in an unfactored form.
C
C Save the given triangle of R or R + B'XB in the other
C strict triangle and the diagonal in the workspace, and try
C Cholesky factorization.
C Workspace: need M.
C
CALL DCOPY( M, R, LDR+1, DWORK, 1 )
IF( LUPLOU ) THEN
C
DO 150 J = 2, M
CALL DCOPY( J-1, R(1,J), 1, R(J,1), LDR )
150 CONTINUE
C
ELSE
C
DO 160 J = 2, M
CALL DCOPY( J-1, R(J,1), LDR, R(1,J), 1 )
160 CONTINUE
C
END IF
CALL DPOTRF( UPLO, M, R, LDR, INFO )
OUFACT(1) = 1
IF( INFO.EQ.0 ) THEN
C
C Compute the reciprocal of the condition number of R.
C Workspace: need 3*M.
C
CALL DPOCON( UPLO, M, R, LDR, RNORMP, RCOND, DWORK, IWORK,
$ INFO )
C
C Return if the matrix is singular to working precision.
C
DWORK(2) = RCOND
IF( RCOND.LT.EPS ) THEN
INFO = M + 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, 3*M )
ELSE
C
C Use UdU' or LdL' factorization, first restoring the saved
C triangle.
C
CALL DCOPY( M, DWORK, 1, R, LDR+1 )
IF( LUPLOU ) THEN
C
DO 170 J = 2, M
CALL DCOPY( J-1, R(J,1), LDR, R(1,J), 1 )
170 CONTINUE
C
ELSE
C
DO 180 J = 2, M
CALL DCOPY( J-1, R(1,J), 1, R(J,1), LDR )
180 CONTINUE
C
END IF
C
C Workspace: need 1,
C prefer M*NB.
C
CALL DSYTRF( UPLO, M, R, LDR, IPIV, DWORK, LDWORK, INFO )
OUFACT(1) = 2
IF( INFO.GT.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C Compute the reciprocal of the condition number of R.
C Workspace: need 2*M.
C
CALL DSYCON( UPLO, M, R, LDR, IPIV, RNORMP, RCOND, DWORK,
$ IWORK, INFO )
C
C Return if the matrix is singular to working precision.
C
DWORK(2) = RCOND
IF( RCOND.LT.EPS ) THEN
INFO = M + 1
RETURN
END IF
END IF
END IF
C
IF (OUFACT(1).EQ.1 ) THEN
C
C Solve the positive definite linear system.
C
CALL DPOTRS( UPLO, M, N, R, LDR, F, LDF, INFO )
ELSE
C
C Solve the indefinite linear system.
C
CALL DSYTRS( UPLO, M, N, R, LDR, IPIV, F, LDF, INFO )
END IF
C
C Set the optimal workspace.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB02ND ***
END
|