1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
SUBROUTINE SB03MD( DICO, JOB, FACT, TRANA, N, A, LDA, U, LDU, C,
$ LDC, SCALE, SEP, FERR, WR, WI, IWORK, DWORK,
$ LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To solve for X either the real continuous-time Lyapunov equation
C
C op(A)'*X + X*op(A) = scale*C (1)
C
C or the real discrete-time Lyapunov equation
C
C op(A)'*X*op(A) - X = scale*C (2)
C
C and/or estimate an associated condition number, called separation,
C where op(A) = A or A' (A**T) and C is symmetric (C = C').
C (A' denotes the transpose of the matrix A.) A is N-by-N, the right
C hand side C and the solution X are N-by-N, and scale is an output
C scale factor, set less than or equal to 1 to avoid overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the equation from which X is to be determined
C as follows:
C = 'C': Equation (1), continuous-time case;
C = 'D': Equation (2), discrete-time case.
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'X': Compute the solution only;
C = 'S': Compute the separation only;
C = 'B': Compute both the solution and the separation.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix A is supplied on entry, as follows:
C = 'F': On entry, A and U contain the factors from the
C real Schur factorization of the matrix A;
C = 'N': The Schur factorization of A will be computed
C and the factors will be stored in A and U.
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, and C. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A. If FACT = 'F', then A contains
C an upper quasi-triangular matrix in Schur canonical form;
C the elements below the upper Hessenberg part of the
C array A are not referenced.
C On exit, if INFO = 0 or INFO = N+1, the leading N-by-N
C upper Hessenberg part of this array contains the upper
C quasi-triangular matrix in Schur canonical form from the
C Schur factorization of A. The contents of array A is not
C modified if FACT = 'F'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If FACT = 'F', then U is an input argument and on entry
C the leading N-by-N part of this array must contain the
C orthogonal matrix U of the real Schur factorization of A.
C If FACT = 'N', then U is an output argument and on exit,
C if INFO = 0 or INFO = N+1, it contains the orthogonal
C N-by-N matrix from the real Schur factorization of A.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry with JOB = 'X' or 'B', the leading N-by-N part of
C this array must contain the symmetric matrix C.
C On exit with JOB = 'X' or 'B', if INFO = 0 or INFO = N+1,
C the leading N-by-N part of C has been overwritten by the
C symmetric solution matrix X.
C If JOB = 'S', C is not referenced.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= 1, if JOB = 'S';
C LDC >= MAX(1,N), otherwise.
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'B', and INFO = 0 or INFO = N+1, SEP
C contains the estimated separation of the matrices op(A)
C and -op(A)', if DICO = 'C' or of op(A) and op(A)', if
C DICO = 'D'.
C If JOB = 'X' or N = 0, SEP is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'B', and INFO = 0 or INFO = N+1, FERR contains an
C estimated forward error bound for the solution X.
C If XTRUE is the true solution, FERR bounds the relative
C error in the computed solution, measured in the Frobenius
C norm: norm(X - XTRUE)/norm(XTRUE).
C If JOB = 'X' or JOB = 'S', FERR is not referenced.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N', and INFO = 0 or INFO = N+1, WR and WI
C contain the real and imaginary parts, respectively, of
C the eigenvalues of A.
C If FACT = 'F', WR and WI are not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C This array is not referenced if JOB = 'X'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= 1, and
C If JOB = 'X' then
C If FACT = 'F', LDWORK >= N*N, for DICO = 'C';
C LDWORK >= MAX(N*N, 2*N), for DICO = 'D';
C If FACT = 'N', LDWORK >= MAX(N*N, 3*N).
C If JOB = 'S' or JOB = 'B' then
C If FACT = 'F', LDWORK >= 2*N*N, for DICO = 'C';
C LDWORK >= 2*N*N + 2*N, for DICO = 'D'.
C If FACT = 'N', LDWORK >= MAX(2*N*N, 3*N), DICO = 'C';
C LDWORK >= 2*N*N + 2*N, for DICO = 'D'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, the QR algorithm failed to compute all
C the eigenvalues (see LAPACK Library routine DGEES);
C elements i+1:n of WR and WI contain eigenvalues
C which have converged, and A contains the partially
C converged Schur form;
C = N+1: if DICO = 'C', and the matrices A and -A' have
C common or very close eigenvalues, or
C if DICO = 'D', and matrix A has almost reciprocal
C eigenvalues (that is, lambda(i) = 1/lambda(j) for
C some i and j, where lambda(i) and lambda(j) are
C eigenvalues of A and i <> j); perturbed values were
C used to solve the equation (but the matrix A is
C unchanged).
C
C METHOD
C
C The Schur factorization of a square matrix A is given by
C
C A = U*S*U'
C
C where U is orthogonal and S is block upper triangular with 1-by-1
C and 2-by-2 blocks on its diagonal, these blocks corresponding to
C the eigenvalues of A, the 2-by-2 blocks being complex conjugate
C pairs. This factorization is obtained by numerically stable
C methods: first A is reduced to upper Hessenberg form (if FACT =
C 'N') by means of Householder transformations and then the
C QR Algorithm is applied to reduce the Hessenberg form to S, the
C transformation matrices being accumulated at each step to give U.
C If A has already been factorized prior to calling the routine
C however, then the factors U and S may be supplied and the initial
C factorization omitted.
C _ _
C If we now put C = U'CU and X = UXU' equations (1) and (2) (see
C PURPOSE) become (for TRANS = 'N')
C _ _ _
C S'X + XS = C, (3)
C and
C _ _ _
C S'XS - X = C, (4)
C
C respectively. Partition S, C and X as
C _ _ _ _
C (s s') (c c') (x x')
C ( 11 ) _ ( 11 ) _ ( 11 )
C S = ( ), C = ( ), X = ( )
C ( ) ( _ ) ( _ )
C ( 0 S ) ( c C ) ( x X )
C 1 1 1
C _ _
C where s , c and x are either scalars or 2-by-2 matrices and s,
C 11 11 11
C _ _
C c and x are either (N-1) element vectors or matrices with two
C columns. Equations (3) and (4) can then be re-written as
C _ _ _
C s' x + x s = c (3.1)
C 11 11 11 11 11
C
C _ _ _ _
C S'x + xs = c - sx (3.2)
C 1 11 11
C
C _ _
C S'X + X S = C - (sx' + xs') (3.3)
C 1 1 1 1 1
C and
C _ _ _
C s' x s - x = c (4.1)
C 11 11 11 11 11
C
C _ _ _ _
C S'xs - x = c - sx s (4.2)
C 1 11 11 11
C
C _ _ _
C S'X S - X = C - sx s' - [s(S'x)' + (S'x)s'] (4.3)
C 1 1 1 1 1 11 1 1
C _
C respectively. If DICO = 'C' ['D'], then once x has been
C 11
C found from equation (3.1) [(4.1)], equation (3.2) [(4.2)] can be
C _
C solved by forward substitution for x and then equation (3.3)
C [(4.3)] is of the same form as (3) [(4)] but of the order (N-1) or
C (N-2) depending upon whether s is 1-by-1 or 2-by-2.
C 11
C _ _
C When s is 2-by-2 then x and c will be 1-by-2 matrices and s,
C 11 11 11
C _ _
C x and c are matrices with two columns. In this case, equation
C (3.1) [(4.1)] defines the three equations in the unknown elements
C _
C of x and equation (3.2) [(4.2)] can then be solved by forward
C 11 _
C substitution, a row of x being found at each step.
C
C REFERENCES
C
C [1] Barraud, A.Y. T
C A numerical algorithm to solve A XA - X = Q.
C IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
C
C [2] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [3] Hammarling, S.J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C If DICO = 'C', SEP is defined as the separation of op(A) and
C -op(A)':
C
C sep( op(A), -op(A)' ) = sigma_min( T )
C
C and if DICO = 'D', SEP is defined as
C
C sep( op(A), op(A)' ) = sigma_min( T )
C
C where sigma_min(T) is the smallest singular value of the
C N*N-by-N*N matrix
C
C T = kprod( I(N), op(A)' ) + kprod( op(A)', I(N) ) (DICO = 'C'),
C
C T = kprod( op(A)', op(A)' ) - I(N**2) (DICO = 'D').
C
C I(x) is an x-by-x identity matrix, and kprod denotes the Kronecker
C product. The program estimates sigma_min(T) by the reciprocal of
C an estimate of the 1-norm of inverse(T). The true reciprocal
C 1-norm of inverse(T) cannot differ from sigma_min(T) by more
C than a factor of N.
C
C When SEP is small, small changes in A, C can cause large changes
C in the solution of the equation. An approximate bound on the
C maximum relative error in the computed solution is
C
C EPS * norm(A) / SEP (DICO = 'C'),
C
C EPS * norm(A)**2 / SEP (DICO = 'D'),
C
C where EPS is the machine precision.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, July 1997.
C Supersedes Release 2.0 routine SB03AD by Control Systems Research
C Group, Kingston Polytechnic, United Kingdom.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, TRANA
INTEGER INFO, LDA, LDC, LDU, LDWORK, N
DOUBLE PRECISION FERR, SCALE, SEP
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * ),
$ U( LDU, * ), WI( * ), WR( * )
C .. Local Scalars ..
LOGICAL CONT, NOFACT, NOTA, WANTBH, WANTSP, WANTX
CHARACTER NOTRA, NTRNST, TRANST, UPLO
INTEGER I, IERR, KASE, LWA, MINWRK, NN, NN2, SDIM
DOUBLE PRECISION EPS, EST, SCALEF
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C .. External Functions ..
LOGICAL LSAME, SELECT1
DOUBLE PRECISION DLAMCH, DLANHS
EXTERNAL DLAMCH, DLANHS, LSAME, SELECT1
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DLACON, MB01RD, SB03MX, SB03MY,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
CONT = LSAME( DICO, 'C' )
WANTX = LSAME( JOB, 'X' )
WANTSP = LSAME( JOB, 'S' )
WANTBH = LSAME( JOB, 'B' )
NOFACT = LSAME( FACT, 'N' )
NOTA = LSAME( TRANA, 'N' )
NN = N*N
NN2 = 2*NN
C
INFO = 0
IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
INFO = -1
ELSE IF( .NOT.WANTBH .AND. .NOT.WANTSP .AND. .NOT.WANTX ) THEN
INFO = -2
ELSE IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -3
ELSE IF( .NOT.NOTA .AND. .NOT.LSAME( TRANA, 'T' ) .AND.
$ .NOT.LSAME( TRANA, 'C' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDU.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( WANTSP .AND. LDC.LT.1 .OR.
$ .NOT.WANTSP .AND. LDC.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE
IF ( WANTX ) THEN
IF ( NOFACT ) THEN
MINWRK = MAX( NN, 3*N )
ELSE IF ( CONT ) THEN
MINWRK = NN
ELSE
MINWRK = MAX( NN, 2*N )
END IF
ELSE
IF ( CONT ) THEN
IF ( NOFACT ) THEN
MINWRK = MAX( NN2, 3*N )
ELSE
MINWRK = NN2
END IF
ELSE
MINWRK = NN2 + 2*N
END IF
END IF
IF( LDWORK.LT.MAX( 1, MINWRK ) )
$ INFO = -19
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB03MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
SCALE = ONE
IF( WANTBH )
$ FERR = ZERO
DWORK(1) = ONE
RETURN
END IF
C
LWA = 0
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of A.
C Workspace: need 3*N;
C prefer larger.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
CALL DGEES( 'Vectors', 'Not ordered', SELECT1, N, A, LDA, SDIM,
$ WR, WI, U, LDU, DWORK, LDWORK, BWORK, INFO )
IF( INFO.GT.0 )
$ RETURN
LWA = INT( DWORK( 1 ) )
END IF
C
IF( .NOT.WANTSP ) THEN
C
C Transform the right-hand side.
C Workspace: N*N.
C
NTRNST = 'N'
TRANST = 'T'
UPLO = 'U'
CALL MB01RD( UPLO, TRANST, N, N, ZERO, ONE, C, LDC, U, LDU, C,
$ LDC, DWORK, LDWORK, INFO )
C
DO 10 I = 2, N
CALL DCOPY( I-1, C(1,I), 1, C(I,1), LDC )
10 CONTINUE
C
LWA = MAX( LWA, NN )
C
C Solve the transformed equation.
C Workspace for DICO = 'D': 2*N.
C
IF ( CONT ) THEN
CALL SB03MY( TRANA, N, A, LDA, C, LDC, SCALE, INFO )
ELSE
CALL SB03MX( TRANA, N, A, LDA, C, LDC, SCALE, DWORK, INFO )
END IF
IF( INFO.GT.0 )
$ INFO = N + 1
C
C Transform back the solution.
C Workspace: N*N.
C
CALL MB01RD( UPLO, NTRNST, N, N, ZERO, ONE, C, LDC, U, LDU, C,
$ LDC, DWORK, LDWORK, IERR )
C
DO 20 I = 2, N
CALL DCOPY( I-1, C(1,I), 1, C(I,1), LDC )
20 CONTINUE
C
END IF
C
IF( .NOT.WANTX ) THEN
C
C Estimate the separation.
C Workspace: 2*N*N for DICO = 'C';
C 2*N*N + 2*N for DICO = 'D'.
C
IF( NOTA ) THEN
NOTRA = 'T'
ELSE
NOTRA = 'N'
END IF
C
EST = ZERO
KASE = 0
C REPEAT
30 CONTINUE
CALL DLACON( NN, DWORK(NN+1), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
IF( CONT ) THEN
CALL SB03MY( TRANA, N, A, LDA, DWORK, N, SCALEF,
$ IERR )
ELSE
CALL SB03MX( TRANA, N, A, LDA, DWORK, N, SCALEF,
$ DWORK(NN2+1), IERR )
END IF
ELSE
IF( CONT ) THEN
CALL SB03MY( NOTRA, N, A, LDA, DWORK, N, SCALEF,
$ IERR )
ELSE
CALL SB03MX( NOTRA, N, A, LDA, DWORK, N, SCALEF,
$ DWORK(NN2+1), IERR )
END IF
END IF
GO TO 30
END IF
C UNTIL KASE = 0
C
SEP = SCALEF / EST
C
IF( WANTBH ) THEN
C
C Get the machine precision.
C
EPS = DLAMCH( 'P' )
C
C Compute the estimate of the relative error.
C
IF ( CONT ) THEN
FERR = EPS*DLANHS( 'Frobenius', N, A, LDA, DWORK )/SEP
ELSE
FERR = EPS*DLANHS( 'Frobenius', N, A, LDA, DWORK )**2/SEP
END IF
END IF
END IF
C
DWORK( 1 ) = DBLE( MAX( LWA, MINWRK ) )
RETURN
C *** Last line of SB03MD ***
END
|