File: sb04md.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (331 lines) | stat: -rw-r--r-- 11,211 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
      SUBROUTINE SB04MD( N, M, A, LDA, B, LDB, C, LDC, Z, LDZ, IWORK,
     $                   DWORK, LDWORK, INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 1999.
C
C     PURPOSE
C
C     To solve for X the continuous-time Sylvester equation
C
C        AX + XB = C
C
C     where A, B, C and X are general N-by-N, M-by-M, N-by-M and
C     N-by-M matrices respectively.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix B.  M >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the coefficient matrix A of the equation.
C             On exit, the leading N-by-N upper Hessenberg part of this
C             array contains the matrix H, and the remainder of the
C             leading N-by-N part, together with the elements 2,3,...,N
C             of array DWORK, contain the orthogonal transformation
C             matrix U (stored in factored form).
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading M-by-M part of this array must
C             contain the coefficient matrix B of the equation.
C             On exit, the leading M-by-M part of this array contains
C             the quasi-triangular Schur factor S of the matrix B'.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,M).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C             On entry, the leading N-by-M part of this array must
C             contain the coefficient matrix C of the equation.
C             On exit, the leading N-by-M part of this array contains
C             the solution matrix X of the problem.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,M)
C             The leading M-by-M part of this array contains the
C             orthogonal matrix Z used to transform B' to real upper
C             Schur form.
C
C     LDZ     INTEGER
C             The leading dimension of array Z.  LDZ >= MAX(1,M).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (4*N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK, and DWORK(2), DWORK(3),..., DWORK(N) contain
C             the scalar factors of the elementary reflectors used to
C             reduce A to upper Hessenberg form, as returned by LAPACK 
C             Library routine DGEHRD. 
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK = MAX(1, 2*N*N + 8*N, 5*M, N + M).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, 1 <= i <= M, the QR algorithm failed to
C                   compute all the eigenvalues (see LAPACK Library
C                   routine DGEES);
C             > M:  if a singular matrix was encountered whilst solving
C                   for the (INFO-M)-th column of matrix X.
C
C     METHOD
C
C     The matrix A is transformed to upper Hessenberg form H = U'AU by
C     the orthogonal transformation matrix U; matrix B' is transformed
C     to real upper Schur form S = Z'B'Z using the orthogonal
C     transformation matrix Z. The matrix C is also multiplied by the
C     transformations, F = U'CZ, and the solution matrix Y of the
C     transformed system
C
C        HY + YS' = F
C
C     is computed by back substitution. Finally, the matrix Y is then
C     multiplied by the orthogonal transformation matrices, X = UYZ', in
C     order to obtain the solution matrix X to the original problem.
C
C     REFERENCES
C
C     [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C         A Hessenberg-Schur method for the problem AX + XB = C.
C         IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C     NUMERICAL ASPECTS
C                                         3       3      2         2
C     The algorithm requires about (5/3) N  + 10 M  + 5 N M + 2.5 M N
C     operations and is backward stable.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB04AD by G. Golub, S. Nash, and
C     C. Van Loan, Stanford University, California, United States of
C     America, January 1982.
C
C     REVISIONS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, June 2000, Aug. 2000.
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDWORK, LDZ, M, N
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), Z(LDZ,*)
C     .. Local Scalars ..
      INTEGER           I, IEIG, IFAIL, IHI, ILO, IND, ITAU, JWORK,
     $                  SDIM, WRKOPT
C     .. Local Scalars ..
      LOGICAL           SELECT
C     .. Local Arrays ..
      LOGICAL           BWORK(1)
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEES, DGEHRD, DGEMM, DGEMV, DLACPY,
     $                  DORMHR, DSWAP, SB04MU, SB04MY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDZ.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LDWORK.LT.MAX( 1, 2*N*N + 8*N, 5*M, N + M ) ) THEN
         INFO = -13
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB04MD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      ILO = 1
      IHI = N
      WRKOPT = 1
C
C     Step 1 : Reduce A to upper Hessenberg and B' to quasi-upper
C              triangular. That is, H = U' * A * U (store U in factored
C              form) and S = Z' * B' * Z (save Z).
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C     
      DO 20 I = 2, M
         CALL DSWAP( I-1, B(1,I), 1, B(I,1), LDB )
   20 CONTINUE
C
C     Workspace:  need   5*M;
C                 prefer larger.
C
      IEIG  = M + 1
      JWORK = IEIG + M
      CALL DGEES( 'Vectors', 'Not ordered', SELECT, M, B, LDB,
     $            SDIM, DWORK, DWORK(IEIG), Z, LDZ, DWORK(JWORK),
     $            LDWORK-JWORK+1, BWORK, INFO )
      IF ( INFO.NE.0 )
     $   RETURN
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     Workspace:  need   2*N;
C                 prefer N + N*NB.
C
      ITAU  = 2
      JWORK = ITAU + N - 1
      CALL DGEHRD( N, ILO, IHI, A, LDA, DWORK(ITAU), DWORK(JWORK),
     $             LDWORK-JWORK+1, IFAIL )
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     Step 2 : Form  F = ( U' * C ) * Z.  Use BLAS 3, if enough space.
C
C     Workspace:  need   N + M;
C                 prefer N + M*NB.
C
      CALL DORMHR( 'Left', 'Transpose', N, M, ILO, IHI, A, LDA,
     $             DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
     $             IFAIL )
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
      IF ( LDWORK.GE.JWORK - 1 + N*M ) THEN
         CALL DGEMM( 'No transpose', 'No transpose', N, M, M, ONE, C,
     $               LDC, Z, LDZ, ZERO, DWORK(JWORK), N )
         CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
         WRKOPT = MAX( WRKOPT, JWORK - 1 + N*M )
      ELSE
C
         DO 40 I = 1, N
            CALL DGEMV( 'Transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
     $                  ZERO, DWORK(JWORK), 1 )
            CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
   40    CONTINUE
C
      END IF
C
      IND = M
   60 CONTINUE
      IF ( IND.GT.1 ) THEN
C
C        Step 3 : Solve  H * Y + Y * S' = F  for  Y.
C
         IF ( B(IND,IND-1).EQ.ZERO ) THEN
C
C           Solve a special linear algebraic system of order N.
C           Workspace:  N*(N+1)/2 + 3*N.
C
            CALL SB04MY( M, N, IND, A, LDA, B, LDB, C, LDC,
     $                   DWORK(JWORK), IWORK, INFO )
C
            IF ( INFO.NE.0 ) THEN
               INFO = INFO + M
               RETURN
            END IF
            WRKOPT = MAX( WRKOPT, JWORK + N*( N + 1 )/2 + 2*N - 1 )
            IND = IND - 1 
         ELSE
C
C           Solve a special linear algebraic system of order 2*N.
C           Workspace:  2*N*N + 8*N;
C
            CALL SB04MU( M, N, IND, A, LDA, B, LDB, C, LDC,
     $                   DWORK(JWORK), IWORK, INFO )
C
            IF ( INFO.NE.0 ) THEN
               INFO = INFO + M
               RETURN
            END IF
            WRKOPT = MAX( WRKOPT, JWORK + 2*N*N + 7*N - 1 )
            IND = IND - 2 
         END IF
         GO TO 60
      ELSE IF ( IND.EQ.1 ) THEN
C
C        Solve a special linear algebraic system of order N.
C        Workspace:  N*(N+1)/2 + 3*N;
C
         CALL SB04MY( M, N, IND, A, LDA, B, LDB, C, LDC,
     $                DWORK(JWORK), IWORK, INFO )
         IF ( INFO.NE.0 ) THEN
            INFO = INFO + M
            RETURN
         END IF
         WRKOPT = MAX( WRKOPT, JWORK + N*( N + 1 )/2 + 2*N - 1 )
      END IF
C
C     Step 4 : Form  C = ( U * Y ) * Z'.  Use BLAS 3, if enough space.
C
C     Workspace:  need   N + M;
C                 prefer N + M*NB.
C
      CALL DORMHR( 'Left', 'No transpose', N, M, ILO, IHI, A, LDA,
     $             DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
     $             IFAIL )
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
      IF ( LDWORK.GE.JWORK - 1 + N*M ) THEN
         CALL DGEMM( 'No transpose', 'Transpose', N, M, M, ONE, C, LDC,
     $               Z, LDZ, ZERO, DWORK(JWORK), N )
         CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
      ELSE
C
         DO 80 I = 1, N
            CALL DGEMV( 'No transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
     $                  ZERO, DWORK(JWORK), 1 )
            CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
   80    CONTINUE
      END IF
C
      RETURN
C *** Last line of SB04MD ***
      END