1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
SUBROUTINE SB04MD( N, M, A, LDA, B, LDB, C, LDC, Z, LDZ, IWORK,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To solve for X the continuous-time Sylvester equation
C
C AX + XB = C
C
C where A, B, C and X are general N-by-N, M-by-M, N-by-M and
C N-by-M matrices respectively.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the coefficient matrix A of the equation.
C On exit, the leading N-by-N upper Hessenberg part of this
C array contains the matrix H, and the remainder of the
C leading N-by-N part, together with the elements 2,3,...,N
C of array DWORK, contain the orthogonal transformation
C matrix U (stored in factored form).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading M-by-M part of this array must
C contain the coefficient matrix B of the equation.
C On exit, the leading M-by-M part of this array contains
C the quasi-triangular Schur factor S of the matrix B'.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C On entry, the leading N-by-M part of this array must
C contain the coefficient matrix C of the equation.
C On exit, the leading N-by-M part of this array contains
C the solution matrix X of the problem.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C Z (output) DOUBLE PRECISION array, dimension (LDZ,M)
C The leading M-by-M part of this array contains the
C orthogonal matrix Z used to transform B' to real upper
C Schur form.
C
C LDZ INTEGER
C The leading dimension of array Z. LDZ >= MAX(1,M).
C
C Workspace
C
C IWORK INTEGER array, dimension (4*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and DWORK(2), DWORK(3),..., DWORK(N) contain
C the scalar factors of the elementary reflectors used to
C reduce A to upper Hessenberg form, as returned by LAPACK
C Library routine DGEHRD.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK = MAX(1, 2*N*N + 8*N, 5*M, N + M).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, 1 <= i <= M, the QR algorithm failed to
C compute all the eigenvalues (see LAPACK Library
C routine DGEES);
C > M: if a singular matrix was encountered whilst solving
C for the (INFO-M)-th column of matrix X.
C
C METHOD
C
C The matrix A is transformed to upper Hessenberg form H = U'AU by
C the orthogonal transformation matrix U; matrix B' is transformed
C to real upper Schur form S = Z'B'Z using the orthogonal
C transformation matrix Z. The matrix C is also multiplied by the
C transformations, F = U'CZ, and the solution matrix Y of the
C transformed system
C
C HY + YS' = F
C
C is computed by back substitution. Finally, the matrix Y is then
C multiplied by the orthogonal transformation matrices, X = UYZ', in
C order to obtain the solution matrix X to the original problem.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C NUMERICAL ASPECTS
C 3 3 2 2
C The algorithm requires about (5/3) N + 10 M + 5 N M + 2.5 M N
C operations and is backward stable.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB04AD by G. Golub, S. Nash, and
C C. Van Loan, Stanford University, California, United States of
C America, January 1982.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, June 2000, Aug. 2000.
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDWORK, LDZ, M, N
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), Z(LDZ,*)
C .. Local Scalars ..
INTEGER I, IEIG, IFAIL, IHI, ILO, IND, ITAU, JWORK,
$ SDIM, WRKOPT
C .. Local Scalars ..
LOGICAL SELECT
C .. Local Arrays ..
LOGICAL BWORK(1)
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DGEHRD, DGEMM, DGEMV, DLACPY,
$ DORMHR, DSWAP, SB04MU, SB04MY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDZ.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LDWORK.LT.MAX( 1, 2*N*N + 8*N, 5*M, N + M ) ) THEN
INFO = -13
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB04MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
ILO = 1
IHI = N
WRKOPT = 1
C
C Step 1 : Reduce A to upper Hessenberg and B' to quasi-upper
C triangular. That is, H = U' * A * U (store U in factored
C form) and S = Z' * B' * Z (save Z).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
DO 20 I = 2, M
CALL DSWAP( I-1, B(1,I), 1, B(I,1), LDB )
20 CONTINUE
C
C Workspace: need 5*M;
C prefer larger.
C
IEIG = M + 1
JWORK = IEIG + M
CALL DGEES( 'Vectors', 'Not ordered', SELECT, M, B, LDB,
$ SDIM, DWORK, DWORK(IEIG), Z, LDZ, DWORK(JWORK),
$ LDWORK-JWORK+1, BWORK, INFO )
IF ( INFO.NE.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Workspace: need 2*N;
C prefer N + N*NB.
C
ITAU = 2
JWORK = ITAU + N - 1
CALL DGEHRD( N, ILO, IHI, A, LDA, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Step 2 : Form F = ( U' * C ) * Z. Use BLAS 3, if enough space.
C
C Workspace: need N + M;
C prefer N + M*NB.
C
CALL DORMHR( 'Left', 'Transpose', N, M, ILO, IHI, A, LDA,
$ DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
$ IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LDWORK.GE.JWORK - 1 + N*M ) THEN
CALL DGEMM( 'No transpose', 'No transpose', N, M, M, ONE, C,
$ LDC, Z, LDZ, ZERO, DWORK(JWORK), N )
CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
WRKOPT = MAX( WRKOPT, JWORK - 1 + N*M )
ELSE
C
DO 40 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
$ ZERO, DWORK(JWORK), 1 )
CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
40 CONTINUE
C
END IF
C
IND = M
60 CONTINUE
IF ( IND.GT.1 ) THEN
C
C Step 3 : Solve H * Y + Y * S' = F for Y.
C
IF ( B(IND,IND-1).EQ.ZERO ) THEN
C
C Solve a special linear algebraic system of order N.
C Workspace: N*(N+1)/2 + 3*N.
C
CALL SB04MY( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
WRKOPT = MAX( WRKOPT, JWORK + N*( N + 1 )/2 + 2*N - 1 )
IND = IND - 1
ELSE
C
C Solve a special linear algebraic system of order 2*N.
C Workspace: 2*N*N + 8*N;
C
CALL SB04MU( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
WRKOPT = MAX( WRKOPT, JWORK + 2*N*N + 7*N - 1 )
IND = IND - 2
END IF
GO TO 60
ELSE IF ( IND.EQ.1 ) THEN
C
C Solve a special linear algebraic system of order N.
C Workspace: N*(N+1)/2 + 3*N;
C
CALL SB04MY( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
WRKOPT = MAX( WRKOPT, JWORK + N*( N + 1 )/2 + 2*N - 1 )
END IF
C
C Step 4 : Form C = ( U * Y ) * Z'. Use BLAS 3, if enough space.
C
C Workspace: need N + M;
C prefer N + M*NB.
C
CALL DORMHR( 'Left', 'No transpose', N, M, ILO, IHI, A, LDA,
$ DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
$ IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LDWORK.GE.JWORK - 1 + N*M ) THEN
CALL DGEMM( 'No transpose', 'Transpose', N, M, M, ONE, C, LDC,
$ Z, LDZ, ZERO, DWORK(JWORK), N )
CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
ELSE
C
DO 80 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
$ ZERO, DWORK(JWORK), 1 )
CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
80 CONTINUE
END IF
C
RETURN
C *** Last line of SB04MD ***
END
|